Beo Deul Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10880037/publications.pdf

Version: 2024-02-01

33	575	13	24
papers	citations	h-index	g-index
33	33	33	1074
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Growth Behavior, nucleation control and excellent optical properties of atomically thin WS2 thin films processed via Gas-phase chemical vapor deposition. Applied Surface Science, 2021, 568, 150908.	6.1	4
2	Observation of dopant-dependent efficiency in chemically doped graphene/silicon solar cells and prospects for MoOx to overcome the stability and efficiency limits. Journal of Applied Physics, 2021, 129, .	2.5	5
3	Gallium dopant-induced tunable electrical properties of reduced graphene oxide using metal organic chemical vapor deposition. Applied Surface Science, 2020, 504, 144500.	6.1	6
4	Barrier-assisted vapor phase CVD of large-area MoS ₂ monolayers with high spatial homogeneity. Nanoscale Advances, 2020, 2, 4106-4116.	4.6	13
5	Large-Scale Atomically Thin Monolayer 2H-MoS ₂ Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 7371-7376.	5.0	14
6	Reduced thermal resistance of heat sink using graphene oxide decorated with copper nanoparticles. Materials Research Bulletin, 2019, 110, 76-81.	5.2	7
7	Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Materials, 2019, 7, .	5.1	31
8	Multidimensional graphene and ZnO-based heterostructure for flexible transparent ultraviolet photodetector. Applied Surface Science, 2019, 481, 524-530.	6.1	32
9	Characteristics of aluminum nitride films on hexagonal boron nitride buffer layers using various growth methods through metal organic chemical vapor deposition. Journal of Crystal Growth, 2019, 507, 316-320.	1.5	6
10	Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Materials Science in Semiconductor Processing, 2017, 59, 45-49.	4.0	15
11	Nanostructural Effect of ZnO on Light Extraction Efficiency of Near-Ultraviolet Light-Emitting Diodes. Journal of Nanomaterials, 2016, 2016, 1-6.	2.7	11
12	Effect of curved graphene oxide in a GaN light-emitting-diode for improving heat dissipation with a patterned sapphire substrate. Semiconductor Science and Technology, 2016, 31, 085010.	2.0	11
13	Long-term stability of Si-organic hybrid solar cells with a thermally tunable graphene oxide platform. RSC Advances, 2016, 6, 72342-72350.	3.6	5
14	Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions. AlP Advances, 2016, 6, .	1.3	17
15	Effect of characteristic properties of graphene oxide on reduced graphene oxide/Si schottky diodes performance. Materials Science in Semiconductor Processing, 2016, 44, 1-7.	4.0	11
16	Significant reduction of AlN wafer bowing grown on sapphire substrate with patterned graphene oxide. Materials Letters, 2015, 160, 496-499.	2.6	0
17	Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern. Journal Physics D: Applied Physics, 2015, 48, 265102.	2.8	9
18	Insights into annealing-induced ohmic contact formation at graphene/p-GaN interface with a NiO _{<i>x</i>} contact layer. Journal Physics D: Applied Physics, 2015, 48, 095102.	2.8	7

#	Article	IF	CITATIONS
19	Solution-processed multidimensional ZnO/CuO heterojunction as ultraviolet sensing. Optical Materials Express, 2015, 5, 1752.	3.0	20
20	Size dependence of silica nanospheres embedded in 385 nm ultraviolet light-emitting diodes on a far-field emission pattern. Optics Express, 2014, 22, A1553.	3.4	0
21	Performance evaluation of GaN light-emitting diodes using transferred graphene as current spreading layer. Journal of Applied Physics, 2014, 115, 054503.	2.5	22
22	Fabrication and Characteristics of GaN-Based Light-Emitting Diodes with a Reduced Graphene Oxide Current-Spreading Layer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22451-22456.	8.0	15
23	Stimulated N-doping of reduced graphene oxide on GaN under excimer laser reduction process. Materials Letters, 2014, 116, 412-415.	2.6	13
24	Impact of Interlayer Processing Conditions on the Performance of GaN Light-Emitting Diode with Specific NiO _{<i>x</i>} /Graphene Electrode. ACS Applied Materials & Interfaces, 2013, 5, 958-964.	8.0	37
25	Air-gap embedding GaN template for enhanced emission from light-emitting diodes. Current Applied Physics, 2013, 13, 1981-1987.	2.4	1
26	Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nature Communications, 2013, 4, 1452.	12.8	177
27	Two-step lateral growth of GaN for improved emission from blue light-emitting diodes. Journal of Crystal Growth, 2013, 372, 157-162.	1.5	1
28	High performance of InGaN light-emitting diodes by air-gap/GaN distributed Bragg reflectors. Optics Express, 2012, 20, 9999.	3.4	12
29	Chemically modified multilayer graphene with metal interlayer as an efficient current spreading electrode for InGaN/GaN blue light-emitting diodes. Journal Physics D: Applied Physics, 2012, 45, 145101.	2.8	35
30	Beam Divergence and Thermal Transient Characteristics of InGaN/GaN Light Emitting Diodes with Rear Side Grown ZnO Nanorods. Japanese Journal of Applied Physics, 2012, 51, 102101.	1.5	0
31	Enhanced light output power of GaN-based light-emitting diodes by nano-rough indium tin oxide film using ZnO nanoparticles. Journal of Applied Physics, 2011, 109, 093116.	2.5	9
32	Nanoscale ITO/ZnO layer-texturing for high-efficiency InGaN/GaN light emitting diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 230-234.	3.5	21
33	Impact of layer thickness and light transmission of ZnO nanomaterials on GaN-based light emitting diodes. Vacuum, 2010, 85, 198-202.	3.5	8