Jean-Pierre Minier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10879350/publications.pdf

Version: 2024-02-01

331670 315739 1,614 42 21 38 h-index citations g-index papers 43 43 43 902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A methodology to devise consistent probability density function models for particle dynamics in turbulent dispersed two-phase flows. Physics of Fluids, 2021, 33, .	4.0	5
2	Colloidal particle resuspension: On the need for refined characterisation of surface roughness. Journal of Aerosol Science, 2018, 118, 1-13.	3.8	19
3	A General Introduction to Particle Deposition. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , 1-36.	0.6	1
4	Statistical descriptions of polydisperse turbulent two-phase flows. Physics Reports, 2016, 665, 1-122.	25.6	36
5	A refined algorithm to simulate latex colloid agglomeration at high ionic strength. Adsorption, 2016, 22, 503-515.	3.0	7
6	Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows. Physical Review E, 2015, 92, 053020.	2.1	11
7	On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Progress in Energy and Combustion Science, 2015, 50, 1-62.	31.2	79
8	A stochastic approach for the simulation of collisions between colloidal particles at large time steps. International Journal of Multiphase Flow, 2014, 61, 94-107.	3.4	17
9	Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 2014, 26, .	4.0	72
10	A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation. Journal of Aerosol Science, 2014, 77, 168-192.	3.8	28
11	Progress in particle resuspension from rough surfaces by turbulent flows. Progress in Energy and Combustion Science, 2014, 45, 1-53.	31.2	157
12	Stochastic modelling of polydisperse turbulent two-phase flows. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014, , 39-86.	0.6	2
13	Mathematical background on stochastic processes. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014, , 1-38.	0.6	O
14	A New Stochastic Approach for the Simulation of Agglomeration between Colloidal Particles. Langmuir, 2013, 29, 13694-13707.	3.5	26
15	Towards a description of particulate fouling: From single particle deposition to clogging. Advances in Colloid and Interface Science, 2012, 185-186, 34-76.	14.7	146
16	Numerical Study on the Adhesion and Reentrainment of Nondeformable Particles on Surfaces: The Role of Surface Roughness and Electrostatic Forces. Langmuir, 2012, 28, 438-452.	3.5	44
17	Numerical Study on the Deposition Rate of Hematite Particle on Polypropylene Walls: Role of Surface Roughness. Langmuir, 2011, 27, 4603-4612.	3.5	51
18	The FDF or LES/PDF method for turbulent two-phase flows. Journal of Physics: Conference Series, 2011, 318, 042049.	0.4	5

#	Article	IF	Citations
19	A note on the consistency of hybrid Eulerian/Lagrangian approach to multiphase flows. International Journal of Multiphase Flow, 2011, 37, 293-297.	3.4	21
20	Mod \tilde{A} ©lisation stochastique d \hat{E} ¼ \tilde{A} ©coulements diphasiques avec changement de phase. Comptes Rendus - Mecanique, 2011, 339, 418-431.	2.1	0
21	A Two-Dimensional Relaxation Scheme for the Hybrid Modelling of Two-Phase Flows. Springer Proceedings in Mathematics, 2011, , 351-359.	0.5	1
22	Mod \tilde{A} ©lisation stochastique du d \tilde{A} ©p \tilde{A} 't et de la remise en suspension de particules dans un \tilde{A} ©coulement turbulent. Houille Blanche, 2011, 97, 82-86.	0.3	1
23	Filtered density function modelling of near-wall scalar transport with POD velocity modes. International Journal of Heat and Fluid Flow, 2009, 30, 76-87.	2.4	3
24	Langevin PDF simulation of particle deposition in a turbulent pipe flow. Journal of Aerosol Science, 2008, 39, 555-571.	3.8	42
25	A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. Journal of Aerosol Science, 2008, 39, 957-973.	3.8	66
26	A stochastic model of coherent structures for particle deposition in turbulent flows. Physics of Fluids, 2008, 20, .	4.0	50
27	A Finite Volume Scheme For Hybrid Turbulent Two-Phase Flow Models. , 2007, , .		3
28	Stochastic modelling of conjugate heat transfer in near-wall turbulence. International Journal of Heat and Fluid Flow, 2006, 27, 867-877.	2.4	11
29	Stochastic Modelling of Conjugate Heat Transfer in Near-Wall Turbulence. , 2005, , 803-812.		0
30	PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow. Physics of Fluids, 2004, 16, 2419-2431.	4.0	73
31	Scalar and joint velocity–scalar PDF modelling of near-wall turbulent heat transfer. International Journal of Heat and Fluid Flow, 2004, 25, 884-895.	2.4	6
32	Probability density function computation of turbulent flows with a new near-wall model. Physics of Fluids, 2004, 16, 1410-1422.	4.0	45
33	Probability density function computation of heated turbulent channel flow with the bounded Langevin model. Journal of Turbulence, 2003, 4, .	1.4	6
34	Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling. Monte Carlo Methods and Applications, 2003, 9, .	0.8	30
35	Full velocity-scalar probability density function computation of heated channel flow with wall function approach. Physics of Fluids, 2003, 15, 1220-1232.	4.0	10
36	Probabilistic formalism and hierarchy of models for polydispersed turbulent two-phase flows. Physical Review E, 2002, 65, 046301.	2.1	41

#	Article	IF	CITATIONS
37	The pdf approach to turbulent polydispersed two-phase flows. Physics Reports, 2001, 352, 1-214.	25.6	249
38	Probabilistic approach to turbulent two-phase flows modelling and simulation: theoretical and numerical issues. Monte Carlo Methods and Applications, $2001, 7, \ldots$	0.8	2
39	Probability density function modeling of dispersed two-phase turbulent flows. Physical Review E, 1999, 59, 855-863.	2.1	86
40	Wall-boundary conditions in probability density function methods and application to a turbulent channel flow. Physics of Fluids, 1999, 11, 2632-2644.	4.0	30
41	On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 1998, 24, 913-945.	3.4	107
42	Derivation of a PDF model for turbulent flows based on principles from statistical physics. Physics of Fluids, 1997, 9, 1748-1753.	4.0	25