Yakir Aharonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10878989/publications.pdf

Version: 2024-02-01

116194 66518 7,205 104 36 citations h-index g-index papers

117 117 117 2757 docs citations times ranked citing authors all docs

82

#	Article	IF	CITATIONS
1	A unified approach to SchrĶdinger evolution of superoscillations and supershifts. Journal of Evolution Equations, 2022, 22, 26.	0.6	6
2	Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions. Foundations of Physics, 2022, 52, .	0.6	2
3	Green's function for the Schr \tilde{A} ¶dinger equation with a generalized point interaction and stability of superoscillations. Journal of Differential Equations, 2021, 277, 153-190.	1.1	13
4	Failed attempt to escape from the quantum pigeon conundrum. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 399, 127287.	0.9	1
5	A new method to generate superoscillating functions and supershifts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210020.	1.0	11
6	A dynamical quantum Cheshire Cat effect and implications for counterfactual communication. Nature Communications, 2021, 12, 4770.	5.8	16
7	On conservation laws in quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	23
8	Diffraction-based interaction-free measurements. Quantum Studies: Mathematics and Foundations, 2020, 7, 145-153.	0.4	1
9	SchrĶdinger evolution of superoscillations with \$\$delta \$\$- and \$\$delta '\$\$-potentials. Quantum Studies: Mathematics and Foundations, 2020, 7, 293-305.	0.4	17
10	What Is Nonlocal in Counterfactual Quantum Communication?. Physical Review Letters, 2020, 125, 260401.	2.9	10
11	Why physical understanding should precede the mathematical formalismâ€"Conditional quantum probabilities as a case-study. American Journal of Physics, 2019, 87, 668-673.	0.3	0
12	Modification of counterfactual communication protocols that eliminates weak particle traces. Physical Review A, 2019, 99, .	1.0	33
13	Interaction-Free Effects Between Distant Atoms. Foundations of Physics, 2018, 48, 1-16.	0.6	14
14	Locality and nonlocality in the interaction-free measurement. EPJ Web of Conferences, 2018, 182, 02105.	0.1	1
15	The Weak Reality That Makes Quantum Phenomena More Natural: Novel Insights and Experiments. Entropy, 2018, 20, 854.	1.1	17
16	Completely top–down hierarchical structure in quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11730-11735.	3.3	15
17	Extraordinary interactions between light and matter determined by anomalous weak values. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180030.	1.0	13
18	The Case of the Disappearing (and Re-Appearing) Particle. Scientific Reports, 2017, 7, 531.	1.6	37

#	Article	IF	CITATIONS
19	Finally making sense of the double-slit experiment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6480-6485.	3.3	45
20	Quantum to Classical Transitions via Weak Measurements and Post-Selection., 2017,, 401-425.		7
21	The Two-Time Interpretation and Macroscopic Time-Reversibility. Entropy, 2017, 19, 111.	1.1	33
22	Beyond Wavefunctions: A Time-Symmetric Nonlocal Ontology for Quantum Mechanics. Boston Studies in the Philosophy and History of Science, 2017, , 235-239.	0.4	0
23	Reply to Svensson: Quantum violations of the pigeonhole principle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3053-E3053.	3.3	2
24	Weak values are quantum: you can bet on it. Quantum Studies: Mathematics and Foundations, 2016, 3, 1-4.	0.4	11
25	Quantum violation of the pigeonhole principle and the nature of quantum correlations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 532-535.	3.3	56
26	Can a future choice affect a past measurement's outcome?. Annals of Physics, 2015, 355, 258-268.	1.0	49
27	Heisenberg scaling with weak measurement: a quantum state discrimination point of view. Quantum Studies: Mathematics and Foundations, 2015, 2, 5-15.	0.4	25
28	Preface to Volume 2, Issue 1 of Quantum Studies: Mathematics and Foundations. Quantum Studies: Mathematics and Foundations, 2015, 2, 1-3.	0.4	0
29	Measurement and collapse within the two-state vector formalism. Quantum Studies: Mathematics and Foundations, 2014, 1, 133-146.	0.4	44
30	Quantum non-barking dogs. New Journal of Physics, 2014, 16, 063026.	1.2	4
31	Weak values and modular variables from a quantum phase-space perspective. Quantum Studies: Mathematics and Foundations, 2014, 1, 97-132.	0.4	4
32	Foundations and applications of weak quantum measurements. Physical Review A, 2014, 89, .	1.0	66
33	On the Aharonov-Bohm Effect and Why Heisenberg Captures Nonlocality Better Than Schr \tilde{A} dinger. , 2014, , 50-61.		2
34	Each Instant of Time a New Universe. , 2014, , 21-36.		12
35	Quantum Cheshire Cats. New Journal of Physics, 2013, 15, 113015.	1.2	130
36	The classical limit of quantum optics: not what it seems at first sight. New Journal of Physics, 2013, 15, 093006.	1.2	12

3

#	Article	IF	CITATIONS
37	Peculiar features of entangled states with postselection. Physical Review A, 2013, 87, .	1.0	11
38	Can Weak Measurement Lend Empirical Support to Quantum Retrocausality?. EPJ Web of Conferences, 2013, 58, 01015.	0.1	8
39	A time-symmetric formulation of quantum mechanics. Physics Today, 2010, 63, 27-32.	0.3	191
40	Quantum interference experiments, modular variables and weak measurements. New Journal of Physics, 2010, 12, 013023.	1.2	57
41	Multiple-time states and multiple-time measurements in quantum mechanics. Physical Review A, 2009, 79, .	1.0	72
42	The deterministic set of operators, quantum interference phenomena, and quantum reality. Journal of Physics: Conference Series, 2009, 196, 012006.	0.3	3
43	The Two-State Vector Formalism: An Updated Review. , 2008, , 399-447.		99
44	Combined electric and magnetic Aharonov–Bohm effects. American Journal of Physics, 2007, 75, 1141-1146.	0.3	2
45	New Insight into Quantum Entanglement Using Weak Values. The Frontiers Collection, 2005, , 283-297.	0.1	2
46	Time and the Quantum: Erasing the Past and Impacting the Future. Science, 2005, 307, 875-879.	6.0	80
47	Quantum averages of weak values. Physical Review A, 2005, 72, .	1.0	95
48	Time and Ensemble Averages in Bohmian Mechanics. Physica Scripta, 2004, 69, 81-83.	1.2	11
49	Model for entangled states with spin-spin interaction. Physical Review A, 2004, 70, .	1.0	4
50	Correcting quantum errors with the Zeno effect. Physical Review A, 2004, 69, .	1.0	15
51	Classical Analog to Topological Nonlocal Quantum Interference Effects. Physical Review Letters, 2004, 92, 020401.	2.9	4
52	Superluminal tunnelling times as weak values. Journal of Modern Optics, 2003, 50, 1139-1149.	0.6	23
53	How macroscopic properties dictate microscopic probabilities. Physical Review A, 2002, 65, .	1.0	19
54	Cherenkov radiation of superluminal particles. Physical Review A, 2002, 66, .	1.0	49

#	Article	IF	Citations
55	Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach. Physical Review A, 2002, 65, .	1.0	51
56	Superoscillations and tunneling times. Physical Review A, 2002, 65, .	1.0	68
57	The Two-State Vector Formalism of Quantum Mechanics. , 2002, , 369-412.		38
58	Sharpening accepted thermodynamic wisdom via quantum control: or cooling to an internal temperature of zero by external coherent control fields without spontaneous emission. Journal of Modern Optics, 2002, 49, 2297-2307.	0.6	3
59	Revisiting Hardy's paradox: counterfactual statements, real measurements, entanglement and weak values. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 130-138.	0.9	241
60	The Mean King's Problem: Spin. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 16-19.	0.7	41
61	Complementarity between Local and Nonlocal Topological Effects. Physical Review Letters, 2000, 84, 4790-4793.	2.9	11
62	"Weighing―a Closed System and the Time-Energy Uncertainty Principle. Physical Review Letters, 2000, 84, 1368-1370.	2.9	39
63	Protective measurements and Bohm trajectories. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 137-146.	0.9	71
64	Quantum Limitations on Superluminal Propagation. Physical Review Letters, 1998, 81, 2190-2193.	2.9	44
65	Protective Measurements of Two-State Vectors. Boston Studies in the Philosophy and History of Science, 1997, , 1-8.	0.4	9
66	The meaning of protective measurements. Foundations of Physics, 1996, 26, 117-126.	0.6	44
67	Comment on "Time asymmetry in quantum mechanics: a retrodiction paradox― Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 203, 148-149.	0.9	3
68	Protective Measurementsa. Annals of the New York Academy of Sciences, 1995, 755, 361-373.	1.8	11
69	Negative Kinetic Energy between Past and Future State Vectorsa. Annals of the New York Academy of Sciences, 1995, 755, 394-399.	1.8	6
70	Interplay of Aharonov-Bohm and Berry Phases for a Quantum Cloud of Chargea. Annals of the New York Academy of Sciences, 1995, 755, 882-887.	1.8	0
71	Aharonov-Bohm and Berry Phases for a Quantum Cloud of Charge. Physical Review Letters, 1994, 73, 918-921.	2.9	36
72	Measurement of the SchrĶdinger wave of a single particle. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 178, 38-42.	0.9	123

#	Article	IF	CITATIONS
73	ALGEBRAIC APPROACH TO THE BORN-OPPENHEIMER APPROXIMATION. Modern Physics Letters A, 1993, 08, 3691-3700.	0.5	1
74	Measurements, errors, and negative kinetic energy. Physical Review A, 1993, 48, 4084-4090.	1.0	74
75	Dephasing of Interference by a Back Reacting Environment. , 1991, , .		1
76	QUANTUM TIME MACHINE., 1991,,.		0
77	Superpositions of time evolutions of a quantum system and a quantum time-translation machine. Physical Review Letters, 1990, 64, 2965-2968.	2.9	198
78	Phase uncertainty and loss of interference: A general picture. Physical Review A, 1990, 41, 3436-3448.	1.0	376
79	Properties of a quantum system during the time interval between two measurements. Physical Review A, 1990, 41, 11-20.	1.0	900
80	How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical Review Letters, 1988, 60, 1351-1354.	2.9	1,952
81	How to ascertain the values ofsigmax,Ïfy, andÏfzof a spin-1/2particle. Physical Review Letters, 1987, 58, 1385-1387.	2.9	110
82	Surprising quantum effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 124, 199-203.	0.9	74
83	The Predictability of the Results of Measurements of Noncommuting Variables. Annals of the New York Academy of Sciences, 1986, 480, 620-621.	1.8	1
84	Measurement process in relativistic quantum theory. Physical Review D, 1986, 34, 1805-1813.	1.6	56
85	Multiple-time properties of quantum-mechanical systems. Physical Review D, 1985, 32, 1975-1984.	1.6	19
86	Curious New Statistical Prediction of Quantum Mechanics. Physical Review Letters, 1985, 54, 5-7.	2.9	59
87	Is the usual notion of time evolution adequate for quantum-mechanical systems? I. Physical Review D, 1984, 29, 223-227.	1.6	44
88	Is the usual notion of time evolution adequate for quantum-mechanical systems? II. Relativistic considerations. Physical Review D, 1984, 29, 228-234.	1.6	78
89	Can we make sense out of the measurement process in relativistic quantum mechanics?. Physical Review D, 1981, 24, 359-370.	1.6	147
90	States and observables in relativistic quantum field theories. Physical Review D, 1980, 21, 3316-3324.	1.6	80

#	Article	lF	Citations
91	Nonlinear vector product to describe rotations. American Journal of Physics, 1977, 45, 451-454.	0.3	14
92	Time Symmetry in the Quantum Process of Measurement. Physical Review, 1964, 134, B1410-B1416.	2.7	694
93	Protective measurement, postselection and the Heisenberg representation., 0,, 28-38.		0
94	Superselection Rules., 0,, 149-159.		1
95	Charges and Fluxons., 0,, 177-191.		1
96	Weak Values. , 0, , 225-248.		0
97	Weak Values and Entanglement. , 0, , 249-263.		0
98	The Quantum World. , 0, , 265-286.		0
99	Phases and Gauges. , 0, , 43-59.		1
100	Modular Variables. , 0, , 61-75.		0
101	Nonlocality and Causality., 0,, 77-91.		0
102	Quantum Measurements., 0,, 93-103.		0
103	Weak Values and Quantum Nonlocality. , 0, , 305-314.		3
104	The super Dirac $\$$ delta $\$$ function and its applications. Quantum Studies: Mathematics and Foundations, 0 , , .	0.4	0