Chia-Wei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10878645/publications.pdf

Version: 2024-02-01

840776 888059 3,082 17 11 17 citations g-index h-index papers 17 17 17 4885 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Nutritional Control of Intestinal Stem Cells in Homeostasis and Tumorigenesis. Trends in Endocrinology and Metabolism, 2021, 32, 20-35.	7.1	24
2	100 Years of Exploiting Diet and Nutrition for Tissue Regeneration. Cell Stem Cell, 2021, 28, 370-373.	11.1	5
3	Identifying Cellâ€Typeâ€Specific Metabolic Signatures Using Transcriptome and Proteome Analyses. Current Protocols, 2021, 1, e245.	2.9	3
4	Cell size is a determinant of stem cell potential during aging. Science Advances, 2021, 7, eabk0271.	10.3	75
5	Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Reports, 2020, 31, 107565.	6.4	52
6	Strategies for Measuring Induction of Fatty Acid Oxidation in Intestinal Stem and Progenitor Cells. Methods in Molecular Biology, 2020, 2171, 53-64.	0.9	3
7	Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell, 2019, 178, 1115-1131.e15.	28.9	231
8	FAOund the Link: Phospholipid Remodeling and Intestinal Stem Cell Growth and Tumorigenesis. Cell Stem Cell, 2018, 22, 141-143.	11.1	3
9	Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell, 2018, 22, 769-778.e4.	11.1	266
10	Starving leukemia to induce differentiation. Nature Medicine, 2017, 23, 14-15.	30.7	2
11	Fasting-Mimicking Diet Promotes Ngn3-Driven \hat{l}^2 -Cell Regeneration to Reverse Diabetes. Cell, 2017, 168, 775-788.e12.	28.9	274
12	Fasting-Mimicking Diet Reduces HO-1 to Promote TÂCell-Mediated Tumor Cytotoxicity. Cancer Cell, 2016, 30, 136-146.	16.8	289
13	Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer, 2016, 16, 360.	2.6	153
14	IGFBP3 and T1D: Systemic Factors in Colonic Stem Cell Function and Diabetic Enteropathy. Cell Stem Cell, 2015, 17, 379-380.	11.1	6
15	Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. Cell Metabolism, 2014, 19, 407-417.	16.2	715
16	Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression. Cell Stem Cell, 2014, 14, 810-823.	11.1	369
17	Growth Hormone Receptor Deficiency Is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans. Science Translational Medicine, 2011, 3, 70ra13.	12.4	612