Roberta Moschini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/108766/publications.pdf

Version: 2024-02-01

43 papers 700 citations

15 h-index 25 g-index

45 all docs 45 docs citations

45 times ranked 871 citing authors

#	Article	IF	CITATIONS
1	Site-Specific Inactivation of Aldose Reductase by 4-Hydroxynonenal. Archives of Biochemistry and Biophysics, 1998, 350, 245-248.	1.4	57
2	In vitro evaluation of 5-arylidene-2-thioxo-4-thiazolidinones active as aldose reductase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 200-203.	1.0	56
3	Chaperone-like features of bovine serum albumin: a comparison with α-crystallin. Cellular and Molecular Life Sciences, 2005, 62, 3092-3099.	2.4	50
4	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	1.1	39
5	Metal Ion Substitution in the Catalytic Site Greatly Affects the Binding of Sulfhydryl-Containing Compounds to Leucyl Aminopeptidase,. Biochemistry, 2006, 45, 3226-3234.	1.2	34
6	Complete Protection by α-Crystallin of Lens Sorbitol Dehydrogenase Undergoing Thermal Stress. Journal of Biological Chemistry, 2000, 275, 32559-32565.	1.6	33
7	Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2010, 18, 4049-4055.	1.4	33
8	The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1152-1158.	2.5	29
9	Colorimetric coupled enzyme assay for \hat{I}^3 -glutamyltransferase activity using glutathione as substrate. Journal of Proteomics, 2006, 67, 123-130.	2.4	28
10	l-Idose: an attractive substrate alternative to d-glucose for measuring aldose reductase activity. Biochemical and Biophysical Research Communications, 2015, 456, 891-895.	1.0	22
11	Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radical Biology and Medicine, 2016, 99, 323-332.	1.3	22
12	NADP+-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification. Free Radical Biology and Medicine, 2015, 83, 66-76.	1.3	20
13	In Search of Differential Inhibitors of Aldose Reductase. Biomolecules, 2022, 12, 485.	1.8	19
14	Rapid colorimetric determination of reduced and oxidized glutathione using an end point coupled enzymatic assay. Analytical and Bioanalytical Chemistry, 2013, 405, 1779-1785.	1.9	17
15	Modulation of aldose reductase activity by aldose hemiacetals. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2329-2339.	1.1	16
16	Zolfino landrace (<i>Phaseolus vulgaris</i> L.) from Pratomagno: general and specific features of a functional food. Food and Nutrition Research, 2016, 60, 31792.	1.2	16
17	Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chemical Biology, 2018, 25, 1414-1418.e3.	2.5	16
18	In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications—A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules, 2021, 26, 330.	1.7	16

#	Article	IF	CITATIONS
19	Chemical profile and nutraceutical features of Salsola soda (agretti): Anti-inflammatory and antidiabetic potential of its flavonoids. Food Bioscience, 2020, 37, 100713.	2.0	14
20	Alpha-crystallin: an ATP-independent complete molecular chaperone toward sorbitol dehydrogenase. Cellular and Molecular Life Sciences, 2005, 62, 599-605.	2.4	13
21	Basic models for differential inhibition of enzymes. Biochemical and Biophysical Research Communications, 2014, 445, 556-560.	1.0	13
22	Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. European Journal of Medicinal Chemistry, 2017, 130, 328-335.	2.6	13
23	Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct. Antioxidants, 2019, 8, 502.	2.2	12
24	Interaction of arabinogalactan with mucins. International Journal of Biological Macromolecules, 2014, 67, 446-451.	3.6	11
25	Soyasaponins from Zolfino bean as aldose reductase differential inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 350-360.	2.5	11
26	Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules, 2020, 10, 1003.	1.8	11
27	Chaperone-like activity of α-crystallin toward aldose reductase oxidatively stressed by copper ion. Archives of Biochemistry and Biophysics, 2006, 453, 13-17.	1.4	10
28	Edible vegetables as a source of aldose reductase differential inhibitors. Chemico-Biological Interactions, 2017, 276, 155-159.	1.7	10
29	Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes. Chemico-Biological Interactions, 2017, 276, 127-132.	1.7	8
30	Cysteinyl-glycine in the control of glutathione homeostasis in bovine lenses. Molecular Vision, 2010, 16, 1025-33.	1.1	8
31	Pathways of 4-Hydroxy-2-Nonenal Detoxification in a Human Astrocytoma Cell Line. Antioxidants, 2020, 9, 385.	2.2	7
32	The furanosidic scaffold of <scp>d</scp> -ribose: a milestone for cell life. Biochemical Society Transactions, 2019, 47, 1931-1940.	1.6	7
33	Intra-site differential inhibition of multi-specific enzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 840-846.	2.5	6
34	How the chemical features of molecules may have addressed the settlement of metabolic steps. Metabolomics, 2018, 14, 2.	1.4	4
35	Cytosolic 5′-Nucleotidase II Silencing in Lung Tumor Cells Regulates Metabolism through Activation of the p53/AMPK Signaling Pathway. International Journal of Molecular Sciences, 2021, 22, 7004.	1.8	4
36	Models of enzyme inhibition and apparent dissociation constants from kinetic analysis to study the differential inhibition of aldose reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1426-1436.	2.5	4

#	Article	IF	CITATION
37	Impact on enzyme activity as a new quality index of wastewater. Journal of Environmental Management, 2013, 117, 76-84.	3.8	3
38	Zofenoprilat-Glutathione Mixed Disulfide as a Specific S-Thiolating Agent of Bovine Lens Aldose Reductase. Antioxidants and Redox Signaling, 2005, 7, 841-848.	2.5	2
39	Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase. Journal of Biological Inorganic Chemistry, 2017, 22, 559-565.	1.1	2
40	Dehydrogenase/reductase activity of human carbonyl reductase 1 with NADP(H) acting as a prosthetic group. Biochemical and Biophysical Research Communications, 2020, 522, 259-263.	1.0	2
41	Purification and characterization of a Cys-Gly hydrolase from the gastropod mollusk, <i>Patella caerulea </i> Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1560-1565.	2.5	1
42	Apparent cooperativity and apparent hyperbolic behavior of enzyme mixtures acting on the same substrate. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1556-1559.	2.5	1
43	Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase. Analytical Sciences, 2016, 32, 901-906.	0.8	0