Zhu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10875521/publications.pdf

Version: 2024-02-01

48187 101384 10,354 97 36 88 citations h-index g-index papers 97 97 97 13781 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9490-9496.	3.3	1,601
2	Use of Arsenic Trioxide (As2O3) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 1997, 89, 3354-3360.	0.6	1,316
3	Acute promyelocytic leukemia: from highly fatal to highly curable. Blood, 2008, 111, 2505-2515.	0.6	1,107
4	Studies on Treatment of Acute Promyelocytic Leukemia With Arsenic Trioxide: Remission Induction, Follow-Up, and Molecular Monitoring in 11 Newly Diagnosed and 47 Relapsed Acute Promyelocytic Leukemia Patients. Blood, 1999, 94, 3315-3324.	0.6	579
5	All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5328-5335.	3.3	564
6	Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nature Reviews Cancer, 2010, 10, 775-783.	12.8	420
7	Challenges to effective cancer control in China, India, and Russia. Lancet Oncology, The, 2014, 15, 489-538.	5.1	411
8	Long-term efficacy and safety of <i>all-trans</i> retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3342-3347.	3.3	380
9	How acute promyelocytic leukaemia revived arsenic. Nature Reviews Cancer, 2002, 2, 705-714.	12.8	309
10	Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine, 2016, 8, 173-183.	2.7	241
11	Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7653-7658.	3.3	240
12	Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell, 2017, 32, 552-560.	7.7	219
13	Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood, 2001, 97, 264-269.	0.6	210
14	Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11711-E11720.	3.3	192
15	Combined Arsenic and Retinoic Acid Treatment Enhances Differentiation and Apoptosis in Arsenic-Resistant NB4 Cells. Blood, 1998, 91, 4300-4310.	0.6	176
16	From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood, 2011, 117, 6425-6437.	0.6	170
17	Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 959-971.	1.8	126
18	Curing APL through PML/RARA degradation by As2O3. Trends in Molecular Medicine, 2012, 18, 36-42.	3.5	126

#	Article	IF	Citations
19	Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15084-15089.	3.3	126
20	Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 373-378.	3.3	104
21	Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood, 2002, 99, 1014-1022.	0.6	84
22	Expanding the use of arsenic trioxide: Leukemias and beyond. Seminars in Hematology, 2002, 39, 22-26.	1.8	74
23	Treatment of Acute Promyelocytic Leukemia with ATRA and As ₂ O ₃ : A Model of Molecular. Cancer Biology and Therapy, 2002, 1, 614-620.	1.5	73
24	H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Reports, 2014, 8, 1989-2002.	2.9	67
25	Arsenic compounds: revived ancient remedies in the fight against human malignancies. Current Opinion in Chemical Biology, 2012, 16, 92-98.	2.8	66
26	Arsenic in cancer therapy. Anti-Cancer Drugs, 2005, 16, 119-127.	0.7	65
27	The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood, 2016, 128, 1525-1528.	0.6	59
28	Breakpoint clusters of the PML gene in acute promyelocytic leukemia: Primary structure of the reciprocal products of the PML-RARA gene in a patient with t(15;17). Genes Chromosomes and Cancer, 1993, 6, 133-139.	1.5	54
29	Conditional knockin of Dnmt3a R878H initiates acute myeloid leukemia with mTOR pathway involvement. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5237-5242.	3.3	54
30	Genomic landscape of CD34 ⁺ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8589-8594.	3.3	52
31	Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death and Disease, 2018, 9, 651.	2.7	52
32	Retinoic acid regulatory pathways, chromosomal translocations, and acute promyelocytic leukemia. , 1996, 15, 147-156.		48
33	Retinoic Acid and Arsenic for Treating Acute Promyelocytic Leukemia. PLoS Medicine, 2005, 2, e12.	3.9	45
34	Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood, 2016, 127, 233-242.	0.6	44
35	Acute promyelocytic leukemia: From clinic to molecular biology. Stem Cells, 1995, 13, 22-31.	1.4	43
36	Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Cell Research, 2018, 28, 476-490.	5.7	43

#	Article	IF	CITATIONS
37	Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide. EBioMedicine, 2015, 2, 563-571.	2.7	42
38	DNA methyltransferase 1 functions through C/ebpa to maintain hematopoietic stem and progenitor cells in zebrafish. Journal of Hematology and Oncology, 2015, 8, 15.	6.9	40
39	Caspase-3 controls AML1-ETO–driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood, 2017, 129, 2782-2792.	0.6	39
40	TanCAR T cells targeting CD19 and CD133 efficiently eliminate MLL leukemic cells. Leukemia, 2018, 32, 2012-2016.	3.3	37
41	How patients have benefited from mouse models of acute promyelocytic leukaemia. Nature Reviews Cancer, 2005, 5, 821-827.	12.8	36
42	Fast Cocyclic Jacket Transform. IEEE Transactions on Signal Processing, 2008, 56, 2143-2148.	3.2	31
43	SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood, 2020, 135, 2271-2285.	0.6	31
44	Arsenic trioxide replacing or reducing chemotherapy in consolidation therapy for acute promyelocytic leukemia (APL2012 trial). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
45	Association of the R485K polymorphism of the Factor V gene with poor response to activated protein C and increased risk of coronary artery disease in the Chinese population. Clinical Genetics, 2001, 57, 296-303.	1.0	30
46	Reply to Kesici et al. and Zeng et al.: Blocking the virus and reducing the inflammatory damage in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12529-12530.	3.3	30
47	An allosteric PGAM1 inhibitor effectively suppresses pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23264-23273.	3.3	27
48	RARA and PML Genes in Acute Promyelocytic Leukemia. Leukemia and Lymphoma, 1992, 8, 253-260.	0.6	26
49	Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood, 2002, 99, 1014-22.	0.6	26
50	Valproic Acid Ameliorates Graft-versus-Host Disease by Downregulating Th1 and Th17 Cells. Journal of Immunology, 2015, 195, 1849-1857.	0.4	23
51	Vibsanin B Preferentially Targets HSP90β, Inhibits Interstitial Leukocyte Migration, and Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2015, 194, 4489-4497.	0.4	23
52	TAMM41 is required for heart valve differentiation via regulation of PINK-PARK2 dependent mitophagy. Cell Death and Differentiation, 2019, 26, 2430-2446.	5.0	22
53	Structural basis of DUX4/IGH-driven transactivation. Leukemia, 2018, 32, 1466-1476.	3.3	21
54	Acute promyelocytic leukemia: A model of molecular target based therapy. Hematology, 2005, 10, 270-280.	0.7	19

#	Article	IF	CITATIONS
55	Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 890-899.	3.3	18
56	Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120787119.	3.3	18
57	Progress in the treatment of acute promyelocytic leukemia: optimization and obstruction. International Journal of Hematology, 2014, 100, 38-50.	0.7	17
58	Sumoylation of CCAAT/enhancer-binding protein \hat{l}_{\pm} is implicated in hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish. Scientific Reports, 2015, 5, 9011.	1.6	16
59	Integration of Genomic and Transcriptomic Markers Improves the Prognosis Prediction of Acute Promyelocytic Leukemia. Clinical Cancer Research, 2021, 27, 3683-3694.	3.2	16
60	PLCG1 is required for AML1-ETO leukemia stem cell self-renewal. Blood, 2022, 139, 1080-1097.	0.6	16
61	Updated Phase 1 Results of a First-in-Human Open-Label Study of Lcar-B38M, a Structurally Differentiated Chimeric Antigen Receptor T (CAR-T) Cell Therapy Targeting B-Cell Maturation Antigen (Bcma). Blood, 2019, 134, 1858-1858.	0.6	15
62	GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1691-1701.	1.1	13
63	Feasibility and clinical significance of real-time quantitative RT–PCR assay of PML-RARα fusion transcript in patients with acute promyelocytic leukemia. The Hematology Journal, 2001, 2, 330-340.	2.0	13
64	Allâ€trans retinoic acid and arsenic combination therapy benefits lowâ€toâ€intermediateâ€risk patients with newly diagnosed acute promyelocytic leukaemia: a longâ€term followâ€up based on multivariate analysis. British Journal of Haematology, 2015, 171, 277-280.	1.2	12
65	CCAAT/enhancer-binding protein $\hat{l}\pm$ is required for hepatic outgrowth via the p53 pathway in zebrafish. Scientific Reports, 2015, 5, 15838.	1.6	11
66	From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era. Acta Pharmacologica Sinica, 2007, 28, 1434-1449.	2.8	9
67	International Collaboration to Save Children With Acute Lymphoblastic Leukemia. Journal of Global Oncology, 2019, 5, 1-2.	0.5	9
68	Interferon regulatory factor 2 binding protein 2b regulates neutrophil <i>versus</i> macrophage fate during zebrafish definitive myelopoiesis. Haematologica, 2020, 105, 325-337.	1.7	9
69	Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-κB-Tgfβ1 pathway. Cell Death and Differentiation, 2021, 28, 170-183.	5.0	9
70	Anticancer activity of green synthesised AgNPs from <i>Cymbopogon citratus</i> (LG) against lung carcinoma cell line A549. IET Nanobiotechnology, 2019, 13, 178-182.	1.9	9
71	Gain-of-Function Mutations of GATA-2 in Acute Myeloid Transformation of Chronic Myeloid Leukemia Blood, 2007, 110, 1022-1022.	0.6	9
72	Using sound Clinical Paths and Diagnosis-related Groups (DRGs)-based payment reform to bring benefits to patient care: A case study of leukemia therapy. Frontiers of Medicine in China, 2010, 4, 8-15.	0.1	8

#	Article	IF	Citations
73	Translational medicine should translate medical science and technology into health care for everyone in China. Science China Life Sciences, 2011, 54, 1074-1076.	2.3	7
74	DNA crosslinking and recombinationâ€activating genes 1/2 (RAG1/2) are required for oncogenic splicing in acute lymphoblastic leukemia. Cancer Communications, 2021, 41, 1116-1136.	3.7	7
75	Mutant Transcription Factors and Tyrosine Kinases as Therapeutic Targets for Leukemias: From Acute Promyelocytic Leukemia to Chronic Myeloid Leukemia and Beyond. Advances in Cancer Research, 2007, 98, 191-220.	1.9	6
76	RNF4 regulates zebrafish granulopoiesis through the DNMT1 /EBPα axis. FASEB Journal, 2018, 32, 4930-4940.	0.2	5
77	Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia, 2019, 33, 1822-1827.	3.3	5
78	Activated factor X targeted stored in platelets as an effective gene therapy strategy for both hemophilia A and B. Clinical and Translational Medicine, 2021, 11, e375.	1.7	4
79	The DNA Binding Property of PML/RARA but Not the Integrity of PML Nuclear Bodies Is Indispensable for Leukemic Transformation. PLoS ONE, 2014, 9, e104906.	1.1	3
80	MLL is required for miRNA-mediated translational repression. Cell Discovery, 2019, 5, 43.	3.1	3
81	Differential Expression of CD49f Discriminates the Independently Emerged Hematopoietic Stem Cells and Erythroid-Biased Progenitors. Blood, 2019, 134, 3700-3700.	0.6	3
82	A novel KMT2A–USO1 fusion geneâ€induced de novo secondary acute myeloid leukaemia in a patient initially diagnosed with acute promyelocytic leukaemia. British Journal of Haematology, 2021, 192, e32-e36.	1.2	2
83	Dynamic Analysis of Cytokine Profile for Cytokine Release Syndrome in Multiple Myeloma Patients after CAR-T Cell Therapy. Blood, 2019, 134, 5617-5617.	0.6	2
84	Application of radiation hybrid in gene mapping. Science in China Series C: Life Sciences, 1998, 41, 644-649.	1.3	1
85	A Simple Cocyclic Jacket Matrices. Mathematical Problems in Engineering, 2008, 2008, 1-18.	0.6	1
86	Palladin is a novel microtubule-associated protein responsible for spindle orientation. Scientific Reports, 2017, 7, 11806.	1.6	1
87	Treating leukemia: differentiation therapy for mIDH2 AML. Cell Research, 2019, 29, 427-428.	5.7	1
88	Inherent hepatocytic heterogeneity determines expression and retention of edited F9 alleles post-AAV/CRISPR infusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110887118.	3.3	1
89	Angiogenesis Induced By Aminoacyl-tRNA Synthetase Deficiency Is Dependent on Amino Acid Response (AAR) but Not Unfolded Protein Response (UPR) Pathways. Blood, 2018, 132, 77-77.	0.6	1
90	The localization of type 2 diabetes susceptibility gene loci in northern Chinese Han families. Science Bulletin, 2000, 45, 1792-1795.	1.7	0

Zhu Chen

#	Article	IF	Citations
91	Retinoic Acid and Arsenic Trioxide Treatment in Acute Promyelocytic Leukemia: A Model of Oncoprotein Targeted Therapy., 0,, 371-392.		O
92	Molecular Characterization of NRG Gene, a Novel Partner, Fused to NUP98 Gene as a Result of the $t(3;11)(q29q13;p15)$ Translocation in an Acute Myeloid/T Lymphocytic Leukemia Blood, 2005, 106, 4335-4335.	0.6	0
93	Aberrant Transcriptional Regulation of the MLL Fusion Partner EEN Gene by AML1-ETO and Its Implication in Leukemogenesis Blood, 2006, 108, 4330-4330.	0.6	0
94	The RARa-PLZF Oncogenic Protein Inhibits C/EBPa Function in Myeloid Cells Blood, 2007, 110, 1825-1825.	0.6	0
95	Front-Line Therapy with Arsenic Trioxide/All-Trans-Retinoic Acid Combination and Chemotherapy Improves Cure Rates in Newly Diagnosed Patients with Acute Promyelocytic Leukemia. Blood, 2008, 112, 2970-2970.	0.6	O
96	Arsenic Trioxide and Leukemia., 2005,, 251-272.		0
97	Cellular and molecular mechanism of arsenic trioxide in the treatment of hematopoietic malignancies., 1999, 5, 82-88.		0