
Jinlong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10874792/publications.pdf Version: 2024-02-01

LINLONG YANG

#	Article	IF	CITATIONS
1	Fe, Cu oordinated ZIFâ€Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries. Advanced Functional Materials, 2018, 28, 1802596.	14.9	340
2	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 16594-16601.	13.8	270
3	Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Applied Materials & Interfaces, 2019, 11, 32046-32051.	8.0	223
4	Highly Dispersed Cobalt Clusters in Nitrogenâ€Doped Porous Carbon Enable Multiple Effects for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2020, 10, 1903550.	19.5	192
5	Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catalysis, 2018, 8, 5621-5629.	11.2	146
6	<i>In situ</i> derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 20093-20099.	10.3	133
7	Co ₃ O _{4â^î^} Quantum Dots As a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 16159-16167.	8.0	104
8	Mesoporous-silica induced doped carbon nanotube growth from metal–organic frameworks. Nanoscale, 2018, 10, 6147-6154.	5.6	96
9	Nanocarbon-intercalated and Fe–N-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 1930-1934.	10.3	88
10	Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 15870-15879.	10.3	81
11	Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nature Communications, 2021, 12, 3085.	12.8	77
12	Nanocrystalline-Li ₂ FeSiO ₄ synthesized by carbon frameworks as an advanced cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6870-6878.	10.3	65
13	Li ₂ FeSiO ₄ nanorods bonded with graphene for high performance batteries. Journal of Materials Chemistry A, 2015, 3, 9601-9608.	10.3	59
14	Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2013, 572, 158-162.	5.5	56
15	Temperature Effect on Co-Based Catalysts in Oxygen Evolution Reaction. Inorganic Chemistry, 2018, 57, 2766-2772.	4.0	54
16	Theoryâ€Ðriven Design of a Cationic Accelerator for Highâ€Performance Electrolytic MnO ₂ –Zn Batteries. Advanced Materials, 2022, 34, .	21.0	53
17	Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 242, 171-178.	7.8	52
18	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie, 2020, 132, 16737-16744.	2.0	52

JINLONG YANG

#	Article	IF	CITATIONS
19	Tuning structural stability and lithium-storage properties by d -orbital hybridization substitution in full tetrahedron Li 2 FeSiO 4 nanocrystal. Nano Energy, 2016, 20, 117-125.	16.0	44
20	Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries. Journal of Power Sources, 2016, 331, 232-239.	7.8	41
21	A Protonâ€Barrier Separator Induced via Hofmeister Effect for Highâ€Performance Electrolytic MnO ₂ –Zn Batteries. Advanced Energy Materials, 2022, 12, .	19.5	41
22	Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature. Nano Energy, 2015, 16, 112-121.	16.0	37
23	Synergistic effect of charge transfer and short H-bonding on nanocatalyst surface for efficient oxygen evolution reaction. Nano Energy, 2019, 59, 443-452.	16.0	28
24	Tuning Cobalt and Nitrogen Coâ€Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction. ChemSusChem, 2018, 11, 3631-3639.	6.8	20
25	Depolarization effects of Li ₂ FeSiO ₄ nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries. RSC Advances, 2016, 6, 47723-47729.	3.6	19
26	Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991.	7.8	19
27	Lithium storage properties of in situ synthesized Li ₂ FeSiO ₄ and LiFeBO ₃ nanocomposites as advanced cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 23368-23375.	10.3	15
28	Sn(ii,iv) steric and electronic structure effects enable self-selective doping on Fe/Si-sites of Li2FeSiO4 nanocrystals for high performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 24437-24445.	10.3	15
29	Tri-phase (1-x-y) Li2FeSiO4·xLiFeBO3·yLiFePO4 nested nanostructure with enhanced Li-storage properties. Chemical Engineering Journal, 2019, 358, 786-793.	12.7	13
30	FeOxand Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries. Nanoscale, 2015, 7, 14344-14350.	5.6	8
31	A dual-confined lithium nucleation and growth design enables dendrite-free lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 11659-11666.	10.3	6
32	FeCoNi sulphide-derived nanodots as electrocatalysts for efficient oxygen evolution reaction. Functional Materials Letters, 2018, 11, 1850058.	1.2	4
33	Resolve cathode electrolyte interphase in lithium batteries with cryo-EM. Microscopy and Microanalysis, 2021, 27, 2188-2190.	0.4	0