Nobuo Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10874754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-healing composites structure using multiple through-thickness microvascular channels. Advanced Composite Materials, 2021, 30, 1-18.	1.0	8
2	Cure-induced strain and failure in deltoid of composite T-joints. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106210.	3.8	13
3	Assessing residual stress redistribution during annealing in thick thermoplastic composites using optical fiber sensors. Journal of Thermoplastic Composite Materials, 2020, 33, 53-68.	2.6	3
4	Damage tolerance improvement of composite T-joint under pull-up conditions using an interlocking-fiber-based crack arrester. Composite Structures, 2020, 253, 112792.	3.1	9
5	Monitoring of dimple formation in honeycomb sandwich structures using distributed fiber optic sensors. Journal of Sandwich Structures and Materials, 2020, , 109963622093582.	2.0	3
6	Self-Healing Composite Structures Using Multiple Through-thickness Microvascular Channels. Journal of the Japan Society for Composite Materials, 2020, 46, 231-239.	0.1	0
7	Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors. Journal of Composite Materials, 2019, 53, 3445-3458.	1.2	20
8	Effect of inter-laminar toughened layers on process-induced strain and deformation of L-shaped composites. Advanced Composite Materials, 2019, 28, 445-461.	1.0	10
9	Effect of Inter-laminar Toughened Layers on Process-induced Strain and Deformation of L-shaped Composites. Journal of the Japan Society for Composite Materials, 2019, 45, 43-51.	0.1	0
10	The influence of skin-core residual stress and cooling rate on the impact response of carbon fibre/polyphenylenesulphide. Journal of Thermoplastic Composite Materials, 2018, 31, 1232-1251.	2.6	5
11	Process-induced strain and distortion in curved composites. Part I: Development of fiber-optic strain monitoring technique and analytical methods. Composites Part A: Applied Science and Manufacturing, 2017, 103, 236-251.	3.8	35
12	Process-induced strain and distortion in curved composites. Part II: Parametric study and application. Composites Part A: Applied Science and Manufacturing, 2017, 103, 219-229.	3.8	30
13	Fiber-optic Sensing for Press Forming of L-shaped Thermoplastic Composites. Procedia Engineering, 2017, 188, 348-353.	1.2	6
14	Process improvement for out-of-autoclave prepreg curing supported by in-situ strain monitoring. Journal of Composite Materials, 2017, 51, 1225-1237.	1.2	11
15	Evaluation of the influence of cooling rate on residual strain development in unidirectional carbon fibre/polyphenylenesulfide laminates using embedded fibre Bragg grating sensors. Journal of Composite Materials, 2017, 51, 1849-1859.	1.2	20
16	Applications of Fiber Optic Sensors in Space Engineering R&D Activities. The Review of Laser Engineering, 2017, 45, 17.	0.0	0
17	Evaluation of damage detectability in practical sandwich structure application conditions using distributed fiber optic sensor. Structural Health Monitoring, 2016, 15, 3-20.	4.3	9
18	Composite cure simulation scheme fully integrating internal strain measurement. Composites Part A: Applied Science and Manufacturing, 2016, 84, 53-63.	3.8	33

#	Article	IF	CITATIONS
19	Unloading response prediction of indentation loaded foam core sandwich structures using extended foam material model with tensile hardening. Composites Part B: Engineering, 2016, 84, 71-82.	5.9	12
20	Cure Shrinkage Monitoring and Process Analysis of CFRP Laminates with Interlaminar-Resin Layers. Journal of the Japan Society for Composite Materials, 2015, 41, 168-175.	0.1	4
21	Thick-walled crack-free CFRP pipes: Stress reduction using atypical lay-up. Composite Structures, 2015, 126, 337-346.	3.1	8
22	Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures. Journal of Sandwich Structures and Materials, 2015, 17, 335-358.	2.0	17
23	Sensing and healing of disbond in composite stiffened panel using hierarchical system. Composite Structures, 2015, 132, 833-841.	3.1	13
24	Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures. Smart Materials and Structures, 2014, 23, 115014.	1.8	21
25	Stress transfer efficiency in aligned multi-wall carbon nanotubes sheet/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2014, 67, 16-21.	3.8	17
26	Monitoring of bearing failure in composite bolted connections using ultrasonic guided waves: A parametric study. Structural Health Monitoring, 2014, 13, 94-105.	4.3	20
27	Improving accuracy of acoustic source localization in anisotropic plates. Ultrasonics, 2014, 54, 1776-1788.	2.1	43
28	Fiber-optic-based life-cycle monitoring of through-thickness strain in thick CFRP pipes. Advanced Composite Materials, 2014, 23, 195-209.	1.0	8
29	Three dimensional orientation angle distribution counting and calculation for the mechanical properties of aligned carbon nanotube/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2014, 65, 1-9.	3.8	25
30	Effect of Prepreg Stretching on the Mechanical Properties of Aligned Carbon Nanotube/Epoxy Composites. Journal of the Japan Society for Composite Materials, 2014, 40, 209-217.	0.1	0
31	Recent advancement in optical fiber sensing for aerospace composite structures. Photonic Sensors, 2013, 3, 345-354.	2.5	65
32	Nanoscopic observations for evaluating the failure process of aligned multi-walled carbon nanotube/epoxy composites. Composites Science and Technology, 2013, 88, 48-56.	3.8	20
33	Life cycle monitoring and advanced quality assurance of L-shaped composite corner part using embedded fiber-optic sensor. Composites Part A: Applied Science and Manufacturing, 2013, 48, 153-161.	3.8	36
34	Formation and relaxation of residual facesheet dent on foam-core sandwich structures by localized transverse loading. Journal of Sandwich Structures and Materials, 2013, 15, 71-91.	2.0	6
35	Fiber-optic-based Life Cycle Monitoring of Through-Thickness Strain in Thick CFRP Pipes. Journal of the Japan Society for Composite Materials, 2013, 39, 143-151.	0.1	1
36	Hierarchical fiber-optic delamination detection system for carbon fiber reinforced plastic structures. Smart Materials and Structures, 2012, 21, 105008.	1.8	8

#	Article	IF	CITATIONS
37	Memorizing and detecting an arrested crack in a foam-core sandwich structure using embedded plastic materials and fiber-optic sensors. Smart Materials and Structures, 2012, 21, 055025.	1.8	10
38	Smart aircraft composite structures with embedded small-diameter optical fiber sensors. , 2012, , .		3
39	Acoustic source localization in anisotropic plates. Ultrasonics, 2012, 52, 740-746.	2.1	193
40	Numerical Analysis for Damage Detection in CFRP Bolted Joints Using Strain Measurement. Journal of the Japan Society for Composite Materials, 2012, 38, 22-29.	0.1	6
41	Life cycle monitoring of large-scale CFRP VARTM structure by fiber-optic-based distributed sensing. Composites Part A: Applied Science and Manufacturing, 2011, 42, 669-676.	3.8	59
42	Damage Detection of CFRP Bolted Joints Using Embedded Optical Fibers with BOCDA System. Journal of the Japan Society for Aeronautical and Space Sciences, 2011, 59, 176-182.	0.0	2
43	Finite Element Analysis on the Impact-induced Damage of Composite Fan Blades Subjected to a Bird Strike. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 54, 238-245.	0.4	2
44	Detecting the point of impact on a cylindrical plate by the acoustic emission technique. , 2011, , .		2
45	Memorization and detection of an arrested crack in a foam-core sandwich structure using a crack arrester with embedded metal wires and FBG sensors. , 2011, , .		1
46	Stress–strain behavior of multi-walled carbon nanotube/PEEK composites. Composites Science and Technology, 2011, 71, 73-78.	3.8	95
47	Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Composites Science and Technology, 2011, 71, 1295-1300.	3.8	122
48	Life Cycle Monitoring of Curved Composite Parts Using Embedded Fiber Bragg Grating Sensors. Advanced Materials Research, 2011, 410, 18-21.	0.3	2
49	Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures. Smart Materials and Structures, 2011, 20, 085029.	1.8	11
50	Detecting an Arrested Crack in a Foam-Core Sandwich Structure Using an Optical Fiber Sensor Embedded in a Crack Arrester. Advanced Composite Materials, 2011, 20, 419-433.	1.0	15
51	Modeling of Fiber Kinking Damage for Bearing Failure in Bolted Joints of CFRP Laminates. Journal of the Japan Society for Composite Materials, 2011, 37, 172-181.	0.1	4
52	Memorization and Detection of an Arrested Crack in Foam-Core Sandwich Structures Using Embedded Metal Wires and Fiber-Optic Sensors. , 2011, , 507-517.		0
53	Detecting Water Accumulation in Honeycomb Sandwich Structures by Optical-fiber-based Distributed Temperature Measurement. Journal of Intelligent Material Systems and Structures, 2009, 20, 2249-2255.	1.4	6
54	Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 998-1009.	0.5	6

#	Article	IF	CITATIONS
55	Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites. Journal of the Japan Society for Composite Materials, 2009, 35, 149-156.	0.1	1
56	Fiber optic sensor-based SHM technologies for aerospace applications in Japan. Proceedings of SPIE, 2008, , .	0.8	10
57	"Segment-wise model―for theoretical simulation of barely visible indentation damage in composite sandwich beams: Part I – Formulation. Composites Part A: Applied Science and Manufacturing, 2008, 39, 133-144.	3.8	18
58	Improvement on out-of-plane impact resistance of CFRP laminates due to through-the-thickness stitching. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1370-1379.	3.8	63
59	Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions. Advanced Composite Materials, 2008, 17, 41-56.	1.0	16
60	Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors. Advanced Composite Materials, 2008, 17, 125-137.	1.0	18
61	Nondestructive Evaluation of Holed CFRP Laminates by a New Technique to Visualize Propagation of Ultrasonic Waves. Journal of Solid Mechanics and Materials Engineering, 2008, 2, 333-341.	0.5	0
62	Shape Reconstruction of Composite Structures Using High-Resolution Distributed Strain Data from Brillouin Scattering Based Optical Fiber Sensing System. Journal of the Japan Society for Aeronautical and Space Sciences, 2008, 56, 522-529.	0.0	3
63	Damage Detection in CFRP Bonded Structures by Using Fiber Bragg Grating Sensors as Ultrasonic Wave Receivers. Key Engineering Materials, 2007, 334-335, 1137-1140.	0.4	1
64	Structural Health Monitoring of an Advanced Grid Structure with Embedded Fiber Bragg Grating Sensors. Structural Health Monitoring, 2007, 6, 309-324.	4.3	23
65	Evaluation of debonding progress in composite bonded structures using ultrasonic waves received in fiber Bragg grating sensors. Smart Materials and Structures, 2007, 16, 1370-1378.	1.8	34
66	Distributed Fiber Optic Strain Sensing with Embedded Small-Diameter Optical Fibers in CFRP Laminate. Key Engineering Materials, 2007, 334-335, 1013-1016.	0.4	0
67	Smart Composite Sandwich Structures for Future Aerospace Application -Damage Detection and Suppression-: a Review. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 3-17.	0.5	41
68	Inverse Analysis for Estimating Damage Patterns in Notched Composite Laminates Using an Embedded FBG Sensor. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 310-321.	0.5	1
69	"Segment-wise model―for theoretical simulation of barely visible indentation damage in composite sandwich beams: Part II – Experimental verification and discussion. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2443-2450.	3.8	9
70	Real-time Detection of Debonding between Honeycomb Core and Facesheet using a Small-diameter FBG Sensor Embedded in Adhesive Layer. Journal of Sandwich Structures and Materials, 2007, 9, 9-33.	2.0	47
71	Characterization of tensile damage progress in stitched CFRP laminates. Advanced Composite Materials, 2007, 16, 223-244.	1.0	16
72	Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading. International Journal of Solids and Structures, 2007, 44, 3101-3113.	1.3	56

Νοβυο Τακέδα

#	Article	IF	CITATIONS
73	Evaluating the orientation and dispersion of carbon nanotubes inside nanocomposites by a focused-ion-beam technique. Materials Letters, 2007, 61, 5095-5097.	1.3	7
74	Tensile properties at different temperature and observation of micro deformation of carbon nanotubes–poly(ether ether ketone) composites. Composites Science and Technology, 2007, 67, 2959-2964.	3.8	63
75	Evaluation of debonding progress in composite bonded structures by ultrasonic wave sensing with fiber Bragg grating sensors. , 2006, , .		3
76	Numerical Simulation of Tensile Damage Evolution in FRP Cross-ply Laminates. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 1254-1261.	0.2	11
77	Damage behavior analysis of smart composites with embedded pre-strained SMA foils. Smart Materials and Structures, 2006, 15, 41-50.	1.8	3
78	Feasibility studies on active damage detection for CFRP aircraft bonding structures. Advanced Composite Materials, 2006, 15, 153-173.	1.0	17
79	On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a Reusable Rocket using FBG Sensors. Structural Health Monitoring, 2006, 5, 205-214.	4.3	38
80	Tensile strength of CFRP cross-ply laminates containing transverse cracks. Advanced Composite Materials, 2006, 15, 81-93.	1.0	8
81	Structural Health Monitoring for Composite Pressur , 2005, , .		0
82	Evaluation of Crack Suppression Effect of TiNi SMA Foil Embedded in CFRP Cross-Ply Laminates with Embedded Small-Diameter FBG Sensor. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2005, 48, 443-450.	0.4	9
83	Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology, 2005, 65, 2575-2587.	3.8	200
84	Modeling of thermo-mechanical behavior of Ti-Ni shape memory alloy foils embedded in carbon fiber reinforced plastic laminates. Advanced Composite Materials, 2005, 14, 25-42.	1.0	8
85	Evaluation of the damage suppression effect of Ti-Ni shape memory alloy foils embedded in carbon fiber reinforced plastic laminates. Advanced Composite Materials, 2005, 14, 43-61.	1.0	2
86	Development of high-speed optical wavelength interrogation system for damage detection in composite materials. , 2005, , .		9
87	A Basic Study of CFRP Laminates with Embedded Prestrained SMA Foils for Aircraft Structures. Journal of Intelligent Material Systems and Structures, 2005, 16, 175-185.	1.4	14
88	Real-Time Damage Detection of Honeycomb Sandwich Structures using Small-Diameter Fiber Bragg Grating Sensors. , 2005, , 383-392.		3
89	Damage growth detection of composite laminate using embedded FBG sensor/PZT actuator hybrid system. , 2005, , .		7
90	Smart Composite Material and Structure Systems Using Fiber Bragg Grating Sensors. The Review of Laser Engineering, 2005, 33, 577-581.	0.0	0

#	Article	IF	CITATIONS
91	Influence of Stress Induced Birefringence on FBG Sensors Embedded in CFRP Laminates. , 2004, , 937-942.		О
92	Development of damage monitoring system for aircraft structure using a PZT actuator/FBG sensor hybrid system. , 2004, 5388, 425.		12
93	Overview of the Japanese Smart Materials Demonstrator Program and Structures System Project. Advanced Composite Materials, 2004, 13, 3-15.	1.0	12
94	Aircraft structural-health monitoring using optical fiber distributed BOTDR sensors. Advanced Composite Materials, 2004, 13, 17-26.	1.0	9
95	Impact damage detection system using small-diameter optical-fiber sensors embedded in CFRP laminate structures. Advanced Composite Materials, 2004, 13, 43-55.	1.0	23
96	Damage suppression in CFRP laminates using embedded shape memory alloy foils. Advanced Composite Materials, 2004, 13, 27-42.	1.0	7
97	Detection of impact damage of stiffened composite panels using embedded small-diameter optical fibers. Smart Materials and Structures, 2004, 13, 1284-1290.	1.8	60
98	High-speed optical wavelength interrogator using a PLC-type optical filter for fiber Bragg grating sensors. , 2004, 5384, 241.		14
99	Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 59-65.	3.8	95
100	Inverse Analysis for Damage Identification in CFRP Laminates with Embedded FBG Sensors. , 2004, , 993-998.		0
101	Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart Materials and Structures, 2003, 12, 940-946.	1.8	75
102	Evaluation of long-term durability in high temperature resistant CFRP laminates under thermal fatigue loading. Composites Part B: Engineering, 2003, 34, 753-759.	5.9	19
103	New concept for modeling the electromechanical behavior of unidirectional carbon-fiber-reinforced plastic under tensile loading. Smart Materials and Structures, 2003, 12, 105-114.	1.8	48
104	Quantitative evaluation of transverse cracks in carbon fiber reinforced plastic quasi-isotropic laminates with embedded small-diameter fiber Bragg grating sensors. Smart Materials and Structures, 2003, 12, 898-903.	1.8	38
105	Damage suppression system using embedded SMA (shape memory alloy) foils in CFRP laminate structures. , 2003, 5054, 192.		1
106	Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks. , 2003, 5056, 304.		4
107	Effect of matrix yield properties on fragmentation behavior of single fiber composites. Composite Interfaces, 2002, 9, 289-308.	1.3	10
108	Effect of fiber coating on crack detection in carbon fiber reinforced plastic composites using fiber Bragg grating sensors. Smart Materials and Structures, 2002, 11, 892-898.	1.8	29

#	Article	IF	CITATIONS
109	<title>Effect of thermal residual stress on the reflection spectrum from FBG sensors embedded in CFRP composites</title> . , 2002, 4704, 59.		1
110	Quantitative Evaluation of Interlaminar-Toughened CFRP Composite by Ultrasonic Wave Propagation Characteristics. Journal of Composite Materials, 2002, 36, 757-769.	1.2	3
111	<title>Detection of delamination in composite laminates using small-diameter FBG sensors</title> . , 2002, 4694, 138.		4
112	<title>Application of chirped fiber Bragg grating sensors for damage identification in composites</title> ., 2002, 4694, 106.		7
113	<title>Crack identification in CFRP laminates using small-diameter FBG sensors</title> . , 2002, 4694, 330.		1
114	<title>Impact damage detection of curved stiffened composite panels by using wavy embedded small-diameter optical fibers</title> . , 2002, 4698, 454.		3
115	Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates. Composites Part A: Applied Science and Manufacturing, 2002, 33, 991-999.	3.8	99
116	Experimental characterization of microscopic damage behavior in carbon/bismaleimide composite—effects of temperature and laminate configuration. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1529-1538.	3.8	22
117	Experimental and analytical characterization of transverse cracking behavior in carbon/bismaleimide cross-ply laminates under mechanical fatigue loading. Composites Part B: Engineering, 2002, 33, 471-478.	5.9	26
118	Detection of microscopic damages in composite laminates. Composites Science and Technology, 2002, 62, 951-958.	3.8	77
119	Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. International Journal of Fatigue, 2002, 24, 281-289.	2.8	80
120	Effect of transverse cracks on lamb wave velocity in CFRP cross-ply laminates. Journal of Materials Science Letters, 2002, 21, 271-273.	0.5	10
121	Polyimide-coated small-diameter optical fiber sensors for embedding in composite laminate structures. , 2001, 4328, 285.		31
122	Application of small-diameter FBG sensors for detection of damages in composites. , 2001, 4328, 295.		5
123	Damage mechanics characterization of transverse cracking behavior in high-temperature CFRP laminates. Composites Science and Technology, 2001, 61, 1049-1055.	3.8	12
124	Damage-mechanics analysis of matrix cracking in cross-ply CFRP laminates under thermal fatigue. Composites Science and Technology, 2001, 61, 1735-1742.	3.8	37
125	Estimation of strength distribution for a fiber embedded in a single-fiber composite: experiments and statistical simulation based on the elasto-plastic shear-lag approach. Composites Science and Technology, 2001, 61, 1789-1800.	3.8	42
126	Effect of embedded SMA fibers on the damage progress in composite laminate. Journal of Materials Science Letters, 2001, 20, 1139-1141.	0.5	2

#	Article	IF	CITATIONS
127	Improved Surface Treatment of SMA Foils and Damage Suppression of SMA-Foil Embedded CFRP Laminates. Journal of Intelligent Material Systems and Structures, 2001, 12, 265-270.	1.4	8
128	Development of damage suppression system using embedded SMA foil in CFRP laminates. , 2001, , .		4
129	Summary report of the structural health-monitoring project for smart composite structure systems. Advanced Composite Materials, 2001, 10, 107-118.	1.0	9
130	Recent advances in structural health monitoring in Japanese smart material/srtucture system project. , 2001, , 11-18.		0
131	A Theory for Multi Damage Evaluation of TiN Thin Film. Materials Research Society Symposia Proceedings, 2000, 653, .	0.1	Ο
132	The estimation of statistical fiber strength by fragmentation tests of single-fiber composites. Composites Science and Technology, 2000, 60, 1965-1974.	3.8	53
133	The application of a ply-refinement technique to the analysis of microscopic deformation in interlaminar-toughened laminates with transverse cracks. Composites Science and Technology, 2000, 60, 231-240.	3.8	17
134	A Theory for Multi Damage Evaluation of TiN Thin Film. Materials Research Society Symposia Proceedings, 2000, 653, 1.	0.1	1
135	Development of small-diameter optical fiber sensors for damage detection in composite laminates. , 2000, , .		22
136	Damage Mechanics Analysis of Transverse Cracking Behavior in Composite Laminates. International Journal of Damage Mechanics, 2000, 9, 113-129.	2.4	9
137	Experimental and Analytical Characterization of Matrix Cracking in Quasi-Isotropic CFRP Laminates with Interlaminar-Toughened Layers under Fatigue Loading. Science and Engineering of Composite Materials, 2000, 9, 45-54.	0.6	1
138	Damage mechanics analysis for predicting mechanical behavior of general composite laminates containing transverse cracks. Advanced Composite Materials, 2000, 9, 363-375.	1.0	10
139	Experimental characterization of the effects of stacking sequence on the transverse crack behavior in quasi-isotropic interleaved CFRP laminates. Advanced Composite Materials, 2000, 9, 241-251.	1.0	17
140	Real-time detection of impact load on composite laminates with embedded small-diameter optical fiber. , 2000, 3986, 112.		5
141	Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Materials and Structures, 2000, 9, 832-838.	1.8	159
142	Effects of toughened interlaminar layers on fatigue damage progress in quasi-isotropic CFRP laminates. International Journal of Fatigue, 1999, 21, 235-242.	2.8	27
143	Effects of stacking sequence on microscopic fatigue damage development in quasi-isotropic CFRP laminates with interlaminar-toughened layers. Composites Science and Technology, 1999, 59, 1387-1398.	3.8	32
144	Effects of Thermal Cycling on Damage Progress in Interlaminar-Toughened CFRP Cross-Ply Laminates. Journal of Reinforced Plastics and Composites, 1999, 18, 1208-1219.	1.6	0

#	Article	IF	CITATIONS
145	DETECTION OF CRACKS IN FRP BY USING EMBEDDED PLASTIC OPTICAL FIBER. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 206-209.	0.1	1
146	Micromechanical characterization of local deformation in interlaminar-toughened CFRP laminates. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1545-1552.	3.8	16
147	In situ observation and analysis of multiple cracking phenomena in thin glass layers deposited on polymer films. Composite Interfaces, 1998, 6, 409-424.	1.3	25
148	Analysis of stress and displacement fields in interlaminar-toughened composite laminates with transverse cracks. Advanced Composite Materials, 1998, 7, 151-167.	1.0	5
149	Transverse cracking in CFRP cross-ply laminates with interlaminar resin layers. Advanced Composite Materials, 1998, 7, 347-363.	1.0	13
150	Experimental characterization of microscopic damage progress in quasi-isotropic CFRP laminates: effect of interlaminar-toughened layers. Advanced Composite Materials, 1998, 7, 183-199.	1.0	31
151	Evaluation of Microscopic Deformation in CFRP Laminates with Delamination by Micro-Grid Methods. Journal of Composite Materials, 1998, 32, 83-100.	1.2	11
152	Effect of strain rate on nonlinear deformation behavior in CFRP composites. Advanced Composite Materials, 1997, 6, 175-196.	1.0	3
153	Effects of Moisture Content on Nonlinear Deformation Behavior of CF/Epoxy Composites. Journal of Composite Materials, 1997, 31, 530-551.	1.2	30
154	Microscopic fatigue failure process in interleaved and toughness-improved CFRP cross-ply laminates. Advanced Composite Materials, 1997, 6, 309-326.	1.0	9
155	Experimental characterization of microscopic failure process under quasi-static tension in interleaved and toughness-improved CFRP cross-ply laminates. Composites Science and Technology, 1997, 57, 267-275.	3.8	17
156	A Study on Interfacial Shear Strength of GF/EPOXY Composites by Means of Microbond Tests. Advanced Composites Letters, 1996, 5, 096369359600500.	1.3	7
157	Introduction to strength of composite materials. Chapter 6. Impact property of composite materials Journal of the Japan Society for Composite Materials, 1996, 22, 233-241.	0.1	1
158	Polymer Matrix Composites. Effect of Temperature on Nonlinear Tensile Stress-Strain Behavior of CF/Epoxy Composites Zairyo/Journal of the Society of Materials Science, Japan, 1996, 45, 478-483.	0.1	3
159	Experimental Characterization of Microscopic Damage Initiation and Growth in Quasi-Isotropic CFRP Laminates Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1996, 62, 2250-2255.	0.2	4
160	Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates. Composites Science and Technology, 1995, 54, 395-404.	3.8	93
161	Microscopic fatigue damage progress in CFRP cross-ply laminates. Composites, 1995, 26, 859-867.	0.9	60
162	Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates. Composites Science and Technology, 1994, 52, 309-318.	3.8	133

#	Article	IF	CITATIONS
163	In situ observation and probabilistic prediction of microscopic failure processes in CFRP cross-ply laminates. Composites Science and Technology, 1994, 52, 183-195.	3.8	108
164	Distributed Strain Monitoring for Damage Evolution in CFRP Bolted Structures with Embedded Optical Fibers. Key Engineering Materials, 0, 558, 252-259.	0.4	1
165	Locating Point of Impact on an Anisotropic Cylindrical Surface Using Acoustic Beamforming Technique. Key Engineering Materials, 0, 558, 331-340.	0.4	25