David Askew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1087393/publications.pdf

Version: 2024-02-01

44 papers 1,112 citations

471509 17 h-index 395702 33 g-index

44 all docs

44 docs citations

44 times ranked 1478 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability. Scientific Reports, 2021, 11, 10676.	3.3	12
2	Notch-Regulated Dendritic Cells Restrain Inflammation-Associated Colorectal Carcinogenesis. Cancer Immunology Research, 2021, 9, 348-361.	3.4	13
3	Sa1159 NOTCH2 SIGNALING REGULATES DENDRITIC CELLS TO LIMIT INFLAMMATION-ASSOCIATED COLON CARCINOGENESIS. Gastroenterology, 2020, 158, S-294.	1.3	O
4	Human Mesenchymal Stromal Cells Enhance the Stability of Umbilical Cord Blood Inducible Tregs during Ex Vivo Expansion Via Mitochondria Transfer. Biology of Blood and Marrow Transplantation, 2019, 25, S330.	2.0	0
5	Inhibiting Notch1 enhances immunotherapy efficacy in melanoma by preventing Notch1 dependent immune suppressive properties. Cancer Letters, 2018, 434, 144-151.	7.2	25
6	Human Bone Marrow Derived Mesenchymal Stromal Cells Enhance the Number and Function of Umbilical Cord Blood Peripheral Tregs during IL-2 Driven Ex Vivo Expansion. Blood, 2018, 132, 1116-1116.	1.4	O
7	Cyclin-dependent kinase 5 activity is required for allogeneic T-cell responses after hematopoietic cell transplantation in mice. Blood, 2017, 129, 246-256.	1.4	14
8	CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFN \hat{I}^3 with Dependency on Natural Killer Cells. Frontiers in Immunology, 2017, 8, 1390.	4.8	27
9	Fingolimod (FTY720), in Clinically-Safe Doses, Ameliorates Graft-Versus-Host Disease (GVHD) in Murine Model of Haploidentical Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, S416-S417.	2.0	O
10	Transient Surface CCR5 Expression by Naive CD8+T Cells within Inflamed Lymph Nodes Is Dependent on High Endothelial Venule Interaction and Augments Th Cell–Dependent Memory Response. Journal of Immunology, 2016, 196, 3653-3664.	0.8	13
11	Abstract A119: CCL3 in the tumor microenvironment augments antitumor immune priming in the lymph node. , $2016, , .$		0
12	Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction. Experimental Neurology, 2015, 266, 74-85.	4.1	31
13	Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden. Oncolmmunology, 2013, 2, e26889.	4.6	61
14	A Novel Role for Lymphocyte Expression of the Cyclin-Dependent Kinase 5 (CDK5) in the Generation of Allogeneic T Cell Responses After BMT. Biology of Blood and Marrow Transplantation, 2011, 17, S160.	2.0	0
15	Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2010, 207, 2507-2519.	8.5	60
16	Secondary Lymphoid Organs Contribute to, but Are Not Required for the Induction of Graft-versus-Host Responses following Allogeneic Bone Marrow Transplantation: A shifting Paradigm for T Cell Allo-activation. Biology of Blood and Marrow Transplantation, 2010, 16, 598-611.	2.0	16
17	Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. Journal of Cell Biology, 2010, 191, i4-i4.	5.2	О
18	Differential Mechanisms for CD4+ and CD8+ Mediated Inflammation in the Development of Experimental Idiopathic Pneumonia Syndrome. Biology of Blood and Marrow Transplantation, 2009, 15, 105.	2.0	0

#	Article	IF	CITATIONS
19	Keratinocyte but Not Endothelial Cell-Specific Overexpression of Tie2 Leads to the Development of Psoriasis. American Journal of Pathology, 2009, 174, 1443-1458.	3.8	77
20	Antigen processing and CD24 expression determine antigen presentation by splenic CD4 ⁺ and CD8 ⁺ dendritic cells. Immunology, 2008, 123, 447-455.	4.4	30
21	Cutaneous Gene Expression by DNA Microarray in Murine Sclerodermatous Graft-Versus-Host Disease, a Model for Human Scleroderma. Journal of Investigative Dermatology, 2007, 127, 281-292.	0.7	85
22	Absence of Cutaneous TNFα-Producing CD4+ T Cells and TNFα may Allow for Fibrosis Rather than Epithelial Cytotoxicity in Murine Sclerodermatous Graft-Versus-Host Disease, a Model for Human Scleroderma. Journal of Investigative Dermatology, 2007, 127, 1905-1914.	0.7	18
23	Regulation of Class II MHC Expression in APCs: Roles of Types I, III, and IV Class II Transactivator. Journal of Immunology, 2002, 169, 1326-1333.	0.8	85
24	Differences in antigen processing with haplotype-mismatched MHC class II heterodimers: AαdAβb heterodimers participate in early endosomal processing. European Journal of Immunology, 2002, 32, 2726-2736.	2.9	2
25	Systemic deficits in transporter for antigen presentation (TAP)â€1 or proteasome subunit LMP2 have little or no effect on tumor incidence. International Journal of Cancer, 2001, 91, 366-372.	5.1	30
26	Clinical and biologic heterogeneity of hereditary nonpolyposis colorectal cancer. International Journal of Cancer, 2001, 95, 323-328.	5.1	19
27	CpG DNA Induces Maturation of Dendritic Cells with Distinct Effects on Nascent and Recycling MHC-II Antigen-Processing Mechanisms. Journal of Immunology, 2000, 165, 6889-6895.	0.8	117
28	CpG DNA Switches on Th1 Immunity and Modulates Antigen-Presenting Cell Function. Current Topics in Microbiology and Immunology, 2000, 247, 199-210.	1.1	11
29	Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunological Reviews, 1999, 168, 217-239.	6.0	47
30	Mouse resident microglia: Isolation and characterization of immunoregulatory properties with na�ve CD4+ and CD8+ T-cells. Glia, 1998, 22, 348-359.	4.9	71
31	Heterogeneity of Mouse Brain Macrophages in Alloantigen Presentation to Naive CD8+ T Cells as Revealed by a Panel of Microglial Cell Lines. Immunobiology, 1996, 195, 417-430.	1.9	4
32	Alloantigen presentation to naive CD8+ T cells by mouse microglia: Evidence for a distinct phenotype based on expression of surface-associated and soluble costimulatory molecules., 1996, 18, 118-128.		10
33	A Subset of Splenic Macrophages Process and Present Native Antigen to Naive Antigen-Specific CD4+T-Cells from Mice Transgenic for an $\hat{l}\pm\hat{l}^2$ T-Cell Receptor. Cellular Immunology, 1995, 166, 62-70.	3.0	13
34	Mouse microglial cell lines differing in constitutive and interferon- \hat{I}^3 -inducible antigen-presenting activities for naive and memory CD4+ and CD8+ T cells. Journal of Neuroimmunology, 1995, 63, 163-174.	2.3	85
35	Macrophage Priming and Activation During Fibrosarcoma Growth: Expression of c-myb, c-myc, c-fos, and c-fms. Immunological Investigations, 1994, 23, 457-472.	2.0	4
36	Tumor-induced modulation of macrophage class II MHC molecule mRNA expression. Molecular Immunology, 1993, 30, 911-920.	2.2	11

#	Article	IF	CITATION
37	Tumor growth and adherence change the expression of macrophage Mac-2. Cancer Letters, 1993, 69, 67-74.	7.2	13
38	Fibrosarcoma-induced increase in macrophage tumor necrosis factor \hat{l}_{\pm} synthesis suppresses T cell responses. Journal of Leukocyte Biology, 1993, 54, 152-160.	3.3	16
39	Phenotypes and mechanisms in the transformation of hematopoietic cells. International Journal of Cell Cloning, 1990, 8, 130-146.	1.6	19
40	Normal and tumor-bearing host macrophage responses: variability in accessory function, surface markers, and cell-cycle kinetics. Immunology Letters, 1990, 24, 21-29.	2.5	8
41	Normal and Tumor-Bearing Host Splenic Macrophage Responses to Lipopolysaccharide. Immunological Investigations, 1990, 19, 41-55.	2.0	8
42	Modulation of Alloreactivity by Mac-1+, -2+, and -3+ Macrophages From Normal and Tumor-Bearing Hosts: Flow Cytofluorometrically Separated Macrophages. Immunobiology, 1990, 182, 1-10.	1.9	11
43	Origins and properties of hematopoietic growth factorâ€dependent cell lines. International Journal of Cell Cloning, 1989, 7, 68-91.	1.6	39
44	Tumor-Induced Variations in a High Molecular Weight Inhibitory Monokine. Immunobiology, 1989, 178, 361-379.	1.9	7