Jeong-Hyeok Im

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10872905/jeong-hyeok-im-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13	13,270 citations	13	13
papers		h-index	g-index
13 ext. papers	14,437 ext. citations	11.6 avg, IF	6.3 L-index

#	Paper	IF	Citations
13	Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy. <i>Advanced Energy Materials</i> , 2019 , 9, 1900284	21.8	71
12	Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 150-157	11.5	140
11	Nanowire perovskite solar cell. <i>Nano Letters</i> , 2015 , 15, 2120-6	11.5	282
10	11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16567-16573	3.8	519
9	Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. <i>Nature Nanotechnology</i> , 2014 , 9, 927-32	28.7	1442
8	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. <i>Science</i> , 2014 , 345, 1593-6	33.3	1920
7	Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. <i>APL Materials</i> , 2014 , 2, 081510	5.7	337
6	3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. <i>Nanoscale</i> , 2014 , 6, 6127-32	7.7	29
5	Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. <i>Scientific Reports</i> , 2012 , 2, 591	4.9	5719
4	Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. <i>Nanoscale Research Letters</i> , 2012 , 7, 353	5	203
3	6.5% efficient perovskite quantum-dot-sensitized solar cell. <i>Nanoscale</i> , 2011 , 3, 4088-93	7.7	2465
2	Pseudo first-order adsorption kinetics of N719 dye on TiO2 surface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 1953-7	9.5	95
1	Unusual Enhancement of Photocurrent by Incorporation of Brfisted Base Thiourea into Electrolyte of Dye-Sensitized Solar Cell. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19849-19852	3.8	48