J Brendan Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10870308/publications.pdf

Version: 2024-02-01

159 papers	8,961 citations	44069 48 h-index	89 g-index
163	163	163	3475
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Paleomagnetism of the Guanyang Devonian sedimentary successions in Guangxi province, South China. Gondwana Research, 2022, 105, 143-159.	6.0	4
2	Reply to comment on "Paleomagnetism of the Guanyang Devonian sedimentary successions in Guangxi province, South China― Gondwana Research, 2022, 107, 59-62.	6.0	0
3	Pannotia: To be or not to be?. Earth-Science Reviews, 2022, 232, 104128.	9.1	10
4	Formation of juvenile continental crust in northern Nubian Shield: New evidence from granitic zircon U-Pb-Hf-O isotopes. Precambrian Research, 2022, 379, 106791.	2.7	7
5	Pannotia's mantle signature: the quest for supercontinent identification. Geological Society Special Publication, 2021, 503, 41-61.	1.3	8
6	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	1.3	34
7	Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-Atlantic Region: A celebration of the career of Damian Nance. Geological Society Special Publication, 2021, 503, 1-11.	1.3	2
8	The amalgamation of Pangea: Paleomagnetic and geological observations revisited. Bulletin of the Geological Society of America, 2021, 133, 625-646.	3.3	29
9	Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 2021, 49, 174-179.	4.4	66
10	The role of megacontinents in the supercontinent cycle. Geology, 2021, 49, 402-406.	4.4	64
11	O and H isotopic evidence for a mantle source of water in appinite magma: An example from the late Neoproterozoic Greendale Complex, Nova Scotia. Lithos, 2021, 386-387, 105997.	1.4	4
12	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	29.7	102
13	The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Communications Earth & Environment, 2021, 2, .	6.8	17
14	Two-stage crustal growth in the Arabian-Nubian shield: Initial arc accretion followed by plume-induced crustal reworking. Precambrian Research, 2021, 359, 106211.	2.7	10
15	Middle Ordovician Upwelling-Related Ironstone of North Wales: Coated Grains, Ocean Chemistry, and Biological Evolution. Frontiers in Earth Science, 2021, 9, .	1.8	7
16	Gondwana's interlinked peripheral orogens. Earth and Planetary Science Letters, 2021, 568, 117057.	4.4	68
17	Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth and Planetary Science Letters, 2021, 568, 117054.	4.4	39
18	Appinite suites and their genetic relationship with coeval voluminous granitoid batholiths. International Geology Review, 2020, 62, 683-713.	2.1	38

#	Article	IF	CITATIONS
19	Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. Geoscience Frontiers, 2020, 11, 1253-1256.	8.4	7
20	Evolution of Subduction Dynamics beneath West Avalonia in Middle to Late Ordovician Times. Lithosphere, 2020, 2020, .	1.4	6
21	Critical role of water in the formation of continental crust. Nature Geoscience, 2020, 13, 331-338.	12.9	108
22	Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Scientific Reports, 2020, 10, 9461.	3.3	27
23	Ordovician ironstone of the Iberian margin: Coastal upwelling, ocean anoxia and Palaeozoic biodiversity. Depositional Record, 2020, 6, 581-604.	1.7	18
24	Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 2020, 13, 511-515.	12.9	42
25	Iberian-Appalachian connection is the missing link between Gondwana and Laurasia that confirms a Wegenerian Pangaea configuration. Scientific Reports, 2020, 10, 2498.	3.3	12
26	Supercontinents: myths, mysteries, and milestones. Geological Society Special Publication, 2019, 470, 39-64.	1.3	34
27	Secular isotopic variation in lithospheric mantle through the Variscan orogen: Neoproterozoic to Cenozoic magmatism in continental Europe. Geology, 2019, 47, 637-640.	4.4	14
28	Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Research, 2019, 75, 239-248.	6.0	29
29	Synorogenic Basins. Regional Geology Reviews, 2019, , 349-429.	1.2	10
30	Neoproterozoic to Cenozoic magmatism in the central part of the Bohemian Massif (Czech Republic): Isotopic tracking of the evolution of the mantle through the Variscan orogeny. Lithos, 2019, 326-327, 358-369.	1.4	10
31	Diachronous Paleozoic accretion of peri-Gondwanan terranes at the Laurentian margin. Geological Society Special Publication, 2019, 470, 289-310.	1.3	32
32	Role of Avalonia in the development of tectonic paradigms. Geological Society Special Publication, 2019, 470, 265-287.	1.3	25
33	Supercontinents and the case for Pannotia. Geological Society Special Publication, 2019, 470, 65-86.	1.3	43
34	Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe. Tectonophysics, 2018, 736, 47-61.	2.2	37
35	A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, 2018, 11, 97-101.	12.9	98
36	Progressive magmatism and evolution of the Variscan suture in southern Iberia. International Journal of Earth Sciences, 2018, 107, 971-983.	1.8	12

#	Article	IF	CITATIONS
37	A hafnium isotopic record of magmatic arcs and continental growth in the Iapetus Ocean: The contrasting evolution of Ganderia and the peri-Laurentian margin. Gondwana Research, 2018, 58, 141-160.	6.0	20
38	Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments. International Journal of Earth Sciences, 2018, 107, 587-599.	1.8	16
39	Post-accretionary exhumation of the Meguma terrane relative to the Avalon terrane in the Canadian Appalachians. Tectonophysics, 2018, 747-748, 343-356.	2.2	11
40	Zircon LA-ICPMS geochronology of the Cornubian Batholith, SW England. Tectonophysics, 2016, 681, 332-352.	2.2	11
41	Mantle evolution in the Variscides of SW England: Geochemical and isotopic constraints from mafic rocks. Tectonophysics, 2016, 681, 353-363.	2.2	8
42	<i>Lesleya</i> Lesquereux from the Pennsylvanian of the Iberian Massif: part of a dryland megaflora from the Variscan orogen, northwestern Portugal. Canadian Journal of Earth Sciences, 2016, 53, 883-895.	1.3	13
43	Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 2016, 449, 118-126.	4.4	316
44	Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe. Tectonophysics, 2016, 681, 209-219.	2.2	47
45	An eastern Mediterranean analogue for the Late Palaeozoic evolution of the Pangaean suture zone in SW Iberia. Geological Society Special Publication, 2016, 424, 241-263.	1.3	17
46	⁴⁰ Ar/ ³⁹ Ar phlogopite geochronology of lamprophyre dykes in Cornwall, UK: new age constraints on Early Permian post-collisional magmatism in the Rhenohercynian Zone, SW England. Journal of the Geological Society, 2015, 172, 566-575.	2.1	22
47	Does the Meguma Terrane Extend into SW England?. Geoscience Canada, 2015, 42, 61-76.	0.8	19
48	How was the lapetus Ocean infected with subduction?. Geology, 2014, 42, 1095-1098.	4.4	46
49	Highly depleted isotopic compositions evident in lapetus and Rheic Ocean basalts: implications for crustal generation and preservation. International Journal of Earth Sciences, 2014, 103, 1219-1232.	1.8	13
50	Changing mantle sources in a suture zone in the heart of Pangea: implications for collisional tectonics during the waning stages of ocean closure. International Journal of Earth Sciences, 2014, 103, 1403-1414.	1.8	4
51	Geochemistry of the Peramora Mélange and Pulo do Lobo schist: geochemical investigation and tectonic interpretation of mafic mélange in the Pangean suture zone, Southern Iberia. International Journal of Earth Sciences, 2014, 103, 1415-1431.	1.8	24
52	U–Pb geochronology and petrology of the late Paleozoic Gil Marquez pluton: magmatism in the Variscan suture zone, southern Iberia, during continental collision and the amalgamation of Pangea. International Journal of Earth Sciences, 2014, 103, 1433-1451.	1.8	30
53	The supercontinent cycle: A retrospective essay. Gondwana Research, 2014, 25, 4-29.	6.0	549
54	First Palaeozoic arachnid from Portugal and implications for Carboniferous palaeobiogeography. Geological Journal, 2013, 48, 101-107.	1.3	8

#	Article	IF	CITATIONS
55	Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: Implications for Neoproterozoic paleogeography. Precambrian Research, 2013, 231, 372-382.	2.7	27
56	Speculations on the mechanisms for the formation and breakup of supercontinents. Geoscience Frontiers, 2013, 4, 185-194.	8.4	83
57	Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development. Gondwana Research, 2013, 23, 1089-1103.	6.0	87
58	Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Reviews, 2013, 119, 35-59.	9.1	95
59	Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone. Lithos, 2013, 182-183, 211-228.	1.4	29
60	Potential geodynamic relationships between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana. Mineralogy and Petrology, 2013, 107, 635-650.	1.1	52
61	Origins of the supercontinent cycle. Geoscience Frontiers, 2013, 4, 439-448.	8.4	103
62	Mafic forearc cumulates and associated rocks in the central high-pressure belt of the Acatl \tilde{A}_i n Complex of southern M \tilde{A} ©xico: geochemical constraints. International Geology Review, 2013, 55, 1401-1417.	2.1	2
63	Arc plutonism in a transtensional regime: the late Palaeozoic Totoltepec pluton, Acatl \tilde{A}_i n Complex, southern Mexico. International Geology Review, 2013, 55, 263-286.	2.1	23
64	Exotic rifted passive margin of a back-arc basin off western Pangea: geochemical evidence from the Early Mesozoic Ayú Complex, southern Mexico. International Geology Review, 2013, 55, 863-881.	2.1	16
65	Tectonic significance of Late Ordovician silicic magmatism, Avaion terrane, northern Antigonish Highlands, Nova Scotia ¹ This article is one of a series of papers published in <i>CJES Special Issue: In honour of Ward Neale</i> on the theme of Appalachian and Grenvillian geology. ² Contribution to International Geological Correlation Programme (IGCP) Paleomagnetic study of the late Neophoterozoic Bull Armand Crown Hill formations (Musgravetown) Tj ETQq0 0	1.3	26
66	paleogeography ¹ This article is one of a series of papers published in <i>CJES Special Issue: In honour of Ward Neale</i> i> on the theme of Appalachian and Grenvillian geology Canadian Journal	1.3	26
67	of Earth Sciences, 2012, 49, 308-327. Mesoproterozoic Oaxaquia-type basement in peri-Gondwanan terranes of Mexico, the Appalachians, and Europe: <i>T</i> <cub>DMage constraints on extent and significance. International Geology Review, 2012, 54, 313-324.</cub>	2.1	30
68	Provenance and tectonic evolution of Ganderia: Constraints on the evolution of the lapetus and Rheic oceans. Geology, 2012, 40, 987-990.	4.4	143
69	Fluid-driven low-grade metamorphism in polydeformed rocks of Avalonia (Arisaig Group, Nova Scotia,) Tj ETQq1 1	. 0 <mark>,78431</mark>	4 rgBT /Overlo
70	High pressure rocks of the Acatlán Complex, southern Mexico: Large-scale subducted Ordovician rifted passive margin extruded into the upper plate during the Devonian–Carboniferous. Tectonophysics, 2012, 560-561, 1-21.	2.2	21
71	A brief history of the Rheic Ocean. Geoscience Frontiers, 2012, 3, 125-135.	8.4	225
72	Probing the composition of unexposed basement, South Portuguese Zone, southern Iberia: implications for the connections between the Appalachian and Variscan orogens. Canadian Journal of Earth Sciences, 2012, 49, 591-613.	1.3	45

#	Article	IF	CITATIONS
73	U–Pb geochronological constraints on the Triassic–Jurassic Ayú Complex, southern Mexico: Derivation from the western margin of Pangea-A. Gondwana Research, 2012, 22, 910-927.	6.0	33
74	Microchemistry of amphiboles near the roof of a mafic magma chamber: Insights into high level melt evolution. Lithos, 2012, 148, 162-175.	1.4	25
75	Diachronous postâ€orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 2011, 30, .	2.8	143
76	Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geoscience, 2011, 4, 333-337.	12.9	336
77	Minas Fault Zone: Late Paleozoic history of an intra-continental orogenic transform fault in the Canadian Appalachians. Journal of Structural Geology, 2011, 33, 312-328.	2.3	81
78	Highly depleted oceanic lithosphere in the Rheic Ocean: Implications for Paleozoic plate reconstructions. Lithos, 2011, 123, 165-175.	1.4	46
79	Early Jurassic magmatism on the northern margin of CAMP: Derivation from a Proterozoic sub-continental lithospheric mantle. Lithos, 2011, 123, 158-164.	1.4	20
80	Secular variations in magmatism and tectonic implications. Lithos, 2011, 123, ix-xiv.	1.4	1
81	A comparison of the evolution of arc complexes in Paleozoic interior and peripheral orogens: Speculations on geodynamic correlations. Gondwana Research, 2011, 19, 812-827.	6.0	48
82	Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U–Pb detrital zircon data from the Late Palaeozoic Pulo do Lobo and South Portuguese zones, southern Iberia. Journal of the Geological Society, 2011, 168, 383-392.	2.1	98
83	Upper Triassic Karmutsen Formation of Western Canada and Alaska: A Plume-Generated Oceanic Plateau Formed Along a Mid-Ocean Ridge Nucleated on a Late Paleozoic Active Margin. , 2011, , 3-27.		2
84	Geochemistry and Sm–Nd isotopic systematics of Ediacaran–Ordovician, sedimentary and bimodal igneous rocks in the western Acatlán Complex, southern Mexico: Evidence for rifting on the southern margin of the Rheic Ocean. Lithos, 2010, 114, 155-167.	1.4	18
85	Evolution of the Rheic Ocean. Gondwana Research, 2010, 17, 194-222.	6.0	540
86	The high-pressure Iberian–Czech belt in the Variscan orogen: Extrusion into the upper (Gondwanan) plate?. Gondwana Research, 2010, 17, 306-316.	6.0	37
87	Comparative evolution of the Iapetus and Rheic Oceans: A North America perspective. Gondwana Research, 2010, 17, 482-499.	6.0	82
88	Structural analysis of an accretionary prism in a continental collisional setting, the Late Paleozoic Pulo do Lobo Zone, Southern Iberia. Gondwana Research, 2010, 17, 422-439.	6.0	51
89	Diagenesis to metamorphism transition in an episutural basin: the late Paleozoic St. Mary's Basin, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 2010, 47, 121-135.	1.3	13
90	Remote predictive mapping of a potential vent complex in the southern Antigonish Highlands using lidar, magnetics, and field mapping. Canadian Journal of Remote Sensing, 2009, 35, 486-495.	2.4	4

#	Article	IF	Citations
91	Rheic Ocean mafic complexes: overview and synthesis. Geological Society Special Publication, 2009, 327, 343-369.	1.3	21
92	Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: Evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions. Bulletin of the Geological Society of America, 2009, 121, 1678-1694.	3.3	38
93	Supercontinent reconstruction from recognition of leading continental edges. Geology, 2009, 37, 595-598.	4.4	18
94	Palaeozoic palaeogeography of Mexico: constraints from detrital zircon age data. Geological Society Special Publication, 2009, 327, 239-269.	1.3	25
95	Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Research, 2009, 15, 408-420.	6.0	133
96	Corrigendum to "Neoproterozoic-Early Devonian Magmatism in the Antigonish Highlands, Avalon terrane, Nova Scotia: Tracking the evolution of the mantle and crustal sources during the evolution of the Rheic Ocean―[Tectonophysics 461 (2008)181–201]. Tectonophysics, 2009, 470, 346.	2.2	0
97	Pressure-temperature-time evolution of high-pressure rocks of the Acatl \tilde{A}_i n Complex (southern) Tj ETQq1 1 0.784: the Geological Society of America, 2009, 121, 1456-1459.	314 rgBT / 3.3	Overlock 1 5
98	Self-subduction of the Pangaean globalÂplate. Nature Geoscience, 2008, 1, 549-553.	12.9	145
99	Age, geochemistry and Sm–Nd isotopic signature of the 0.76Ga Burin Group: Compositional equivalent of Avalonian basement?. Precambrian Research, 2008, 165, 37-48.	2.7	47
100	40Ar–39Ar white mica ages reveal Neoproterozoic/Paleozoic provenance and an Alleghanian overprint in coeval Upper Ordovician–Lower Devonian rocks of Meguma and Avalonia. Tectonophysics, 2008, 461, 265-276.	2.2	22
101	Ordovician–earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean. Tectonophysics, 2008, 461, 130-156.	2.2	70
102	Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. Tectonophysics, 2008, 461, 277-290.	2.2	117
103	Neoproterozoic–Early Devonian magmatism in the Antigonish Highlands, Avalon terrane, Nova Scotia: Tracking the evolution of the mantle and crustal sources during the evolution of the Rheic Ocean. Tectonophysics, 2008, 461, 181-201.	2.2	54
104	Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana. Tectonophysics, 2008, 461, 166-180.	2.2	76
105	Ediacaran–Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics, 2008, 461, 202-214.	2.2	70
106	The Pangea conundrum. Geology, 2008, 36, 703.	4.4	78
107	Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Geological Society Special Publication, 2008, 297, 345-383.	1.3	178
108	The origin of the Variscan upper allochthons in the Ortegal Complex, northwestern Iberia: Sm–Nd isotopic constraints on the closure of the Rheic Ocean. Canadian Journal of Earth Sciences, 2008, 45, 651-668.	1.3	23

#	Article	IF	Citations
109	U-Pb depositional age for the upper Barrios Formation (Armorican Quartzite facies) in the Cantabrian zone of Iberia: Implications for stratigraphic correlation and paleogeography., 2007,,.		23
110	Vestige of the Rheic Ocean in North America: The Acatlaln Complex of southern Melxico., 2007,,.		9
111	P-T-t constraints on exhumation following subduction in the Rheic Ocean from eclogitic rocks in the Acatlaln Complex of southern Melxico. , 2007, , .		10
112	Geological evolution of middle to late Paleozoic rocks in the Avalon terrane of northern mainland Nova Scotia, Canadian Appalachians: A record of tectonothermal activity along the northern margin of the Rheic Ocean in the Appalachian-Caledonide orogen., 2007,,.		4
113	Continental mafic magmatism of different ages in the same terrane: Constraints on the evolution of an enriched mantle source. Geology, 2007, 35, 335.	4.4	67
114	Mapping subtle structures with light detection and ranging (LIDAR): flow units and phreatomagmatic rootless cones in the North Mountain Basalt, Nova Scotia. Canadian Journal of Earth Sciences, 2006, 43, 157-176.	1.3	28
115	Acadian deformation in the shallow crust: an example from the Siluro-Devonian Arisaig Group, Avalon terrane, mainland Nova Scotia. Canadian Journal of Earth Sciences, 2006, 43, 71-81.	1.3	6
116	Endings and beginnings: Paleogeography of the Neoproterozoic–Cambrian transition. Precambrian Research, 2006, 147, 187-192.	2.7	8
117	Fault-controlled emplacement of arc-related magmas along the Neoproterozoic northern Gondwanan margin: An example from the Antigonish Highlands, Nova Scotia. Precambrian Research, 2006, 147, 305-319.	2.7	12
118	Acatl \tilde{A}_i n Complex, southern Mexico: Record spanning the assembly and breakup of Pangea. Geology, 2006, 34, 857.	4.4	54
119	Geochemistry and U–Pb protolith ages of eclogitic rocks of the AsÃs Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico: tectonothermal activity along the southern margin of the Rheic Ocean. Journal of the Geological Society, 2006, 163, 683-695.	2.1	62
120	Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture?. Geology, 2006, 34, 325.	4.4	304
121	Detrital Zircon Data from the Eastern Mixteca Terrane, Southern Mexico: Evidence for an Ordovician—Mississippian Continental Rise and a Permo-Triassic Clastic Wedge Adjacent to Oaxaquia. International Geology Review, 2006, 48, 97-111.	2.1	57
122	The application of lidar-derived digital elevation model analysis to geological mapping: an example from the Fundy Basin, Nova Scotia, Canada. Canadian Journal of Remote Sensing, 2006, 32, 173-193.	2.4	33
123	Do Supercontinents Turn Inside-in or Inside-out?. International Geology Review, 2005, 47, 591-619.	2.1	44
124	The Acadian Orogeny in the Northern Appalachians. International Geology Review, 2005, 47, 663-687.	2.1	64
125	Geochemistry of the Tremadocian Ti \tilde{A} ±u Formation (Southern Mexico): Provenance in the Underlying $\hat{a}^1/41$ Ga Oaxacan Complex on the Southern Margin of the Rheic Ocean. International Geology Review, 2005, 47, 887-900.	2.1	14
126	Structural analysis of the Creignish Hills Mylonite Zone, Cape Breton Island, Nova Scotia: implications for Neoproterozoic core complex development along the northern Gondwanan margin?. Journal of Geodynamics, 2005, 39, 231-246.	1.6	1

#	Article	IF	CITATIONS
127	Lithogeochemical and Sm-Nd and U-Pb isotope data from the Silurian–Lower Devonian Arisaig Group clastic rocks, Avalon terrane, Nova Scotia: A record of terrane accretion in the Appalachian-Caledonide orogen. Bulletin of the Geological Society of America, 2004, 116, 1183.	3.3	48
128	Contiguous rather than discrete Paleozoic histories for the Avalon and Meguma terranes based on detrital zircon data. Geology, 2004, 32, 585.	4.4	112
129	Neoproterozoic?Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. International Journal of Earth Sciences, 2004, 93, 659-682.	1.8	263
130	Neoproterozoic juvenile crust development in the peri-Rodinian ocean: Implications for Grenvillian orogenesis. , 2004 , , 135 - 144 .		5
131	Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence. Geology, 2003, 31, 873.	4.4	135
132	Geochemistry of the Neoproterozoic Metasedimentary Gamble Brook Formation, Avalon Terrane, Nova Scotia: Evidence for a Riftedâ€Arc Environment along the West Gondwanan Margin of Rodinia. Journal of Geology, 2002, 110, 407-419.	1.4	42
133	Discussion and reply: West African proximity of the Avalon terrane in the latest Precambrian. Bulletin of the Geological Society of America, 2002, 114, 1049-1050.	3.3	19
134	Saddle reef auriferous veins in a conical fold termination (Oldham anticline, Meguma terrane, Nova) Tj ETQq0 0 39, 53-63.	0 rgBT /O [.] 1.3	verlock 10 Tf 5
135	Orogenesis and Basin Development: Uâ€Pb Detrital Zircon Age Constraints on Evolution of the Late Paleozoic St. Marys Basin, Central Mainland Nova Scotia. Journal of Geology, 2000, 108, 53-71.	1.4	43
136	Neoproterozoic-early Paleozoic evolution of Avalonia. , 1999, , .		33
136	Neoproterozoic-early Paleozoic evolution of Avalonia. , 1999, , . Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny?. Geology, 1999, 27, 653.	4.4	107
	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style	4.4	
137	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny?. Geology, 1999, 27, 653. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth		107
137	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny?. Geology, 1999, 27, 653. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 1998, 35, 110-120.	1.3	107 21
137 138 139	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny?. Geology, 1999, 27, 653. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 1998, 35, 110-120. Plume-modified orogeny: An example from the western United States. Geology, 1998, 26, 731. Regional significance of new U–Pb age data for Neoproterozoic igneous units in Avalonian rocks of	1.3 4.4	107 21 73
137 138 139	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny?. Geology, 1999, 27, 653. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 1998, 35, 110-120. Plume-modified orogeny: An example from the western United States. Geology, 1998, 26, 731. Regional significance of new U–Pb age data for Neoproterozoic igneous units in Avalonian rocks of northern mainland Nova Scotia, Canada. Geological Magazine, 1997, 134, 113-120. Tectonic influence on late Proterozoic Avalonian magmatism: An example from the Greendale	1.3 4.4	107 21 73 47
137 138 139 140	Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny? Geology, 1999, 27, 653. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 1998, 35, 110-120. Plume-modified orogeny: An example from the western United States. Geology, 1998, 26, 731. Regional significance of new U–Pb age data for Neoproterozoic igneous units in Avalonian rocks of northern mainland Nova Scotia, Canada. Geological Magazine, 1997, 134, 113-120. Tectonic influence on late Proterozoic Avalonian magmatism: An example from the Greendale Complex, Antigonish Highlands, Nova Scotia, Canada., 1997, Geochemical and isotopic characteristics of Early Silurian clastic sequences in Antigonish Highlands, Nova Scotia, Canada: constraints on the accretion of Avalonia in the Appalachian – Caledonide	1.3 4.4 1.5	107 21 73 47

#	Article	IF	CITATIONS
145	Mylonitic mafic granulite in fault megabreccia at Clarke Head, Nova Scotia: a sample of Avalonian lower crust?. Geological Magazine, 1995, 132, 81-90.	1.5	10
146	Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian-Cadomian belt. Geology, 1994, 22, 617.	4.4	299
147	Geochemistry and tectonic discrimination of Late Proterozoic arc-related volcaniclastic turbidite sequences, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 1993, 30, 2273-2282.	1.3	21
148	Tectonic significance of the Late Proterozoic Economy River gneiss, Cobequid Highlands, Avalon Composite Terrane, Nova Scotia. Canadian Journal of Earth Sciences, 1993, 30, 474-479.	1.3	49
149	Correlation of Neoproterozoic III sequences in the Avalon Composite Terrane of mainland Nova Scotia: tectonic implications. Atlantic Geology, 1992, 28, .	0.2	13
150	Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology, 1991, 19, 469.	4.4	233
151	U–Pb geochronology of Late Proterozoic rocks of the eastern Cobequid Highlands, Avalon Composite Terrane, Nova Scotia. Canadian Journal of Earth Sciences, 1991, 28, 504-511.	1.3	35
152	Uppermost Precambrian(?)–Lower Cambrian of mainland Nova Scotia: faunas, depositional environments, and stratigraphic revision. Journal of Paleontology, 1991, 65, 382-396.	0.8	69
153	Tectonic control on the origin and orientation of igneous layering: An example from the Greendale Complex,Antigonish Highlands, Nova Scotia, Canada. Geology, 1990, 18, 403.	4.4	27
154	Kinematic history of the Bass River Complex, Nova Scotia: Cadomian tectonostratigraphic relations in the Avalon terrane of the Canadian Appalachians. Geological Society Special Publication, 1990, 51, 395-406.	1.3	13
155	Tectonic implications of 40Ar/ 39Ar hornblende ages from late Proterozoic-Cambrian plutons in the Avalon Composite Terrane, Nova Scotia, Canada. Bulletin of the Geological Society of America, 1990, 102, 516-528.	3.3	48
156	Model for the evolution of the Avalonian-Cadomian belt. Geology, 1989, 17, 735.	4.4	149
157	Geochemistry and tectonic setting of the late Precambrian Folly River Formation, Cobequid Highlands, Avalon Terrane, Nova Scotia: a continental rift within a volcanic-arc environment. Atlantic Geology, 1989, 25, .	0.2	9
158	Late Precambrian to Late Devonian mafic magmatism in the Antigonish Highlands of Nova Scotia: multistage melting of a hydrated mantle. Canadian Journal of Earth Sciences, 1988, 25, 473-485.	1.3	11
159	Contrasting secondary mobility of Ti, P, Zr, Nb, and Y in two metabasaltic suites in the Appalachians. Canadian Journal of Earth Sciences, 1986, 23, 1138-1144.	1.3	66