

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1087001/publications.pdf Version: 2024-02-01

		11608	18075
207	16,186	70	120
papers	citations	h-index	g-index
211	211	211	17122
all docs	docs citations	times ranked	citing authors

LEI CE

#	Article	IF	CITATIONS
1	Ultrathin Ironâ€Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	11.1	1,144
2	Two‣tep Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3110-3116.	7.2	863
3	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56, 4876-4889.	3.8	461
4	Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosensors and Bioelectronics, 2012, 31, 212-218.	5.3	396
5	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	5.2	377
6	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	5.8	366
7	Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials, 2012, 33, 1024-1031.	5.7	344
8	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A, 2020, 8, 1511-1544.	5.2	305
9	Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on A Chip, 2011, 11, 1286.	3.1	296
10	Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 2013, 49, 9914.	2.2	294
11	3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab on A Chip, 2012, 12, 3150.	3.1	257
12	Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	15.6	243
13	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Đimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	7.2	205
14	Electrochemical immunoassay on a 3D microfluidic paper-based device. Chemical Communications, 2012, 48, 4683.	2.2	199
15	A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosensors and Bioelectronics, 2011, 26, 3284-3289.	5.3	178
16	Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosensors and Bioelectronics, 2013, 41, 544-550.	5.3	177
17	Layered Double Hydroxide Functionalized Textile for Effective Oil/Water Separation and Selective Oil Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 791-800.	4.0	176
18	Selectivity Control for Electrochemical CO ₂ Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.	5.5	172

#	Article	IF	CITATIONS
19	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research, 2018, 11, 3509-3518.	5.8	167
20	Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. Chemical Communications, 2014, 50, 1417-1419.	2.2	166
21	Mixed Matrix Membranes with Strengthened MOFs/Polymer Interfacial Interaction and Improved Membrane Performance. ACS Applied Materials & Interfaces, 2014, 6, 5609-5618.	4.0	163
22	Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochimica Acta, 2012, 80, 334-341.	2.6	161
23	Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosensors and Bioelectronics, 2012, 32, 238-243.	5.3	159
24	Truly Immobilization-Free Diffusivity-Mediated Photoelectrochemical Biosensing Strategy for Facile and Highly Sensitive MicroRNA Assay. Analytical Chemistry, 2018, 90, 9591-9597.	3.2	159
25	Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation. ACS Applied Materials & Interfaces, 2016, 8, 32041-32049.	4.0	157
26	High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. Chemistry of Materials, 2019, 31, 5238-5244.	3.2	153
27	Photoelectrochemical Lab-on-Paper Device Based on an Integrated Paper Supercapacitor and Internal Light Source. Analytical Chemistry, 2013, 85, 3961-3970.	3.2	142
28	Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. Journal of Membrane Science, 2016, 505, 61-69.	4.1	141
29	Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1, 6350.	5.2	140
30	High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 2015, 82, 417-424.	5.4	140
31	Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosensors and Bioelectronics, 2013, 47, 271-277.	5.3	137
32	Directâ€Laserâ€Writing of Metal Sulfideâ€Graphene Nanocomposite Photoelectrode toward Sensitive Photoelectrochemical Sensing. Advanced Functional Materials, 2019, 29, 1904000.	7.8	135
33	High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20, 9619.	6.7	133
34	Paperâ€Based Electrochemiluminescent 3D Immunodevice for Labâ€onâ€Paper, Specific, and Sensitive Pointâ€ofâ€Care Testing. Chemistry - A European Journal, 2012, 18, 4938-4945.	1.7	132
35	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573	5.2	128
36	Mixed-Matrix Membranes with Metal–Organic Framework-Decorated CNT Fillers for Efficient CO ₂ Separation. ACS Applied Materials & Interfaces, 2015, 7, 14750-14757.	4.0	124

#	Article	IF	CITATIONS
37	Molecularly Imprinted Polymer Grafted Porous Auâ€Paper Electrode for an Microfluidic Electroâ€Analytical Origami Device. Advanced Functional Materials, 2013, 23, 3115-3123.	7.8	115
38	Systematic investigation on new SrCo1â^'yNbyO3â^'δ ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science, 2008, 323, 436-443.	4.1	114
39	Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy. Lab on A Chip, 2012, 12, 4489.	3.1	114
40	Novel B-site ordered double perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'x} for highly efficient oxygen reduction reaction. Energy and Environmental Science, 2011, 4, 872-875.	15.6	112
41	Properties and performance of A-site deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â~'δ for oxygen permeating membrane. Journal of Membrane Science, 2007, 306, 318-328.	4.1	111
42	Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Separation and Purification Technology, 2011, 78, 76-82.	3.9	109
43	In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Transactions, 2014, 43, 7028.	1.6	108
44	Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism. Desalination, 2017, 413, 127-135.	4.0	108
45	Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosensors and Bioelectronics, 2014, 56, 97-103.	5.3	107
46	A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosensors and Bioelectronics, 2016, 77, 220-226.	5.3	105
47	A Universal Paper-Based Electrochemical Sensor for Zero-Background Assay of Diverse Biomarkers. ACS Applied Materials & Interfaces, 2019, 11, 15381-15388.	4.0	103
48	A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosensors and Bioelectronics, 2012, 38, 355-361.	5.3	100
49	A disposable paper-based electrochemical sensor with an addressable electrode array for cancer screening. Chemical Communications, 2012, 48, 9397.	2.2	99
50	Porous Polyethersulfone-Supported Zeolitic Imidazolate Framework Membranes for Hydrogen Separation. Journal of Physical Chemistry C, 2012, 116, 13264-13270.	1.5	96
51	Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification. Analytical Chemistry, 2016, 88, 2212-2219.	3.2	93
52	A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosensors and Bioelectronics, 2013, 49, 79-85.	5.3	92
53	Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosensors and Bioelectronics, 2013, 50, 262-268.	5.3	91
54	Halloysite-Nanotube-Supported Ru Nanoparticles for Ammonia Catalytic Decomposition to Produce CO _{<i>x</i>} -Free Hydrogen. Energy & Fuels, 2011, 25, 3408-3416.	2.5	88

#	Article	IF	CITATIONS
55	Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Analytica Chimica Acta, 2014, 847, 1-9.	2.6	87
56	Electrochemical CO2 reduction in membrane-electrode assemblies. CheM, 2022, 8, 663-692.	5.8	86
57	A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate. Electrochimica Acta, 2013, 107, 147-154.	2.6	85
58	Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO ₂ nanotubes for specific and sensitive detection chlorpyrifos. Analyst, The, 2013, 138, 939-945.	1.7	84
59	Investigation of Gas Permeability in Carbon Nanotube (CNT)â^'Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location. Journal of Physical Chemistry C, 2011, 115, 6661-6670.	1.5	83
60	A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing. Chemical Communications, 2013, 49, 3294.	2.2	83
61	Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosensors and Bioelectronics, 2015, 63, 450-457.	5.3	81
62	Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chemistry of Materials, 2011, 23, 4193-4198.	3.2	80
63	Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst, The, 2012, 137, 3821.	1.7	80
64	A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chemical Communications, 2013, 49, 1383-1385.	2.2	80
65	Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform. Analytical Chemistry, 2016, 88, 9691-9698.	3.2	77
66	Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Applied Catalysis B: Environmental, 2021, 286, 119945.	10.8	77
67	Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab on A Chip, 2013, 13, 3945.	3.1	76
68	A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. Chemical Communications, 2014, 50, 1947.	2.2	76
69	New Undisputed Evidence and Strategy for Enhanced Latticeâ€Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Advanced Science, 2022, 9, e2200530.	5.6	75
70	Rational Design of a Waterâ€Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	5.6	74
71	Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Analytical and Bioanalytical Chemistry, 2014, 406, 5613-5630.	1.9	73
72	Synthesis and characterization of three amino-functionalized metal–organic frameworks based on the 2-aminoterephthalic ligand. Dalton Transactions, 2015, 44, 8190-8197.	1.6	72

#	Article	IF	CITATIONS
73	Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors. Catalysis Reviews - Science and Engineering, 2021, 63, 1-67.	5.7	71
74	Evaluation and optimization of Bi1â^'xSrxFeO3â^'δ perovskites as cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 3179-3186.	3.8	70
75	Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver–chitosan. Biosensors and Bioelectronics, 2014, 56, 167-173.	5.3	69
76	Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO ₂ Reduction to Formate by Controlled Surface Sn Electrodeposition. ACS Applied Materials & Interfaces, 2020, 12, 21670-21681.	4.0	69
77	Ratiometric NanoCluster Beacon: A Label-Free and Sensitive Fluorescent DNA Detection Platform. ACS Applied Materials & Interfaces, 2017, 9, 13102-13110.	4.0	68
78	Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector. Chemical Communications, 2014, 50, 5699.	2.2	65
79	Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. Journal of Materials Chemistry A, 2016, 4, 6084-6090.	5.2	65
80	Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon, 2013, 57, 22-33.	5.4	64
81	3D microfluidic origami electrochemiluminescence immunodevice for sensitive point-of-care testing of carcinoma antigen 125. Sensors and Actuators B: Chemical, 2013, 176, 1-8.	4.0	62
82	In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay. Biosensors and Bioelectronics, 2013, 49, 111-117.	5.3	61
83	Electro-Grafted Electrode with Graphene-Oxide-Like DNA Affinity for Ratiometric Homogeneous Electrochemical Biosensing of MicroRNA. Analytical Chemistry, 2017, 89, 11560-11567.	3.2	60
84	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	4.6	60
85	Composite cathodes for protonic ceramic fuel cells: Rationales and materials. Composites Part B: Engineering, 2022, 238, 109881.	5.9	59
86	Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1704-1709.	2.0	58
87	Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosensors and Bioelectronics, 2015, 63, 232-239.	5.3	58
88	A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification. Biosensors and Bioelectronics, 2013, 43, 425-431.	5.3	56
89	Highly active nickelâ \in "cobalt/nanocarbon thin films as efficient water splitting electrodes. Nanoscale, 2016, 8, 18507-18515.	2.8	56
90	Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 44300-44307.	4.0	53

#	Article	IF	CITATIONS
91	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.	4.0	52
92	Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture. RSC Advances, 2013, 3, 25360.	1.7	51
93	Graphene-Assisted Label-Free Homogeneous Electrochemical Biosensing Strategy based on Aptamer-Switched Bidirectional DNA Polymerization. ACS Applied Materials & Interfaces, 2015, 7, 28566-28575.	4.0	50
94	Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation. Separation and Purification Technology, 2017, 173, 63-71.	3.9	50
95	Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba ₂ Bi _{0.1} Sc _{0.2} Co _{1.7} O _{6â^'<i>x</i>} Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2011, 23, 1618-1624.	3.2	49
96	A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs. Analyst, The, 2013, 138, 2704.	1.7	49
97	Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection. ACS Applied Materials & Interfaces, 2017, 9, 32089-32096.	4.0	49
98	An origami electrochemiluminescence immunosensor based on gold/graphene for specific, sensitive point-of-care testing of carcinoembryonic antigen. Sensors and Actuators B: Chemical, 2014, 193, 247-254.	4.0	48
99	Pore channel surface modification for enhancing anti-fouling membrane distillation. Applied Surface Science, 2018, 443, 217-226.	3.1	48
100	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3â~δ perovskite with improved operational stability. Journal of Membrane Science, 2008, 318, 182-190.	4.1	47
101	Halloysite Nanotube Supported Ru Nanocatalysts Synthesized by the Inclusion of Preformed Ru Nanoparticles for Preferential Oxidation of CO in H ₂ -Rich Atmosphere. Journal of Physical Chemistry C, 2013, 117, 4141-4151.	1.5	46
102	From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. Composites Part B: Engineering, 2020, 198, 108214.	5.9	46
103	Highly sensitive electrogenerated chemiluminescence biosensor based on hybridization chain reaction and amplification of gold nanoparticles for DNA detection. Sensors and Actuators B: Chemical, 2015, 220, 942-948.	4.0	45
104	The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO 2 , CH 4 and N 2. Microporous and Mesoporous Materials, 2017, 238, 19-26.	2.2	45
105	Calcium Looping for CO ₂ Capture at a Constant High Temperature. Energy & Fuels, 2014, 28, 307-318.	2.5	43
106	Interfacial engineering of a polymer–MOF composite by <i>in situ</i> vitrification. Chemical Communications, 2020, 56, 3609-3612.	2.2	43
107	Selfâ€Powered and Sensitive DNA Detection in a Threeâ€Dimensional Origamiâ€Based Biofuel Cell Based on a Porous Ptâ€Paper Cathode. Chemistry - A European Journal, 2014, 20, 12453-12462.	1.7	42
108	A novel enzyme biosensor for glucose based on rhodanine derivative chemiluminescence system and mesoporous hollow silica microspheres receptor. Biosensors and Bioelectronics, 2010, 25, 2065-2070.	5.3	39

#	Article	IF	CITATIONS
109	Enabling Process Intensification by 3 D Printing of Catalytic Structures. ChemCatChem, 2017, 9, 4132-4138.	1.8	39
110	Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3â~î́r (LSCF) perovskite via a modified complexing sol–gel process with NH4NO3 as combustion aid. Journal of Alloys and Compounds, 2008, 450, 338-347.	2.8	38
111	A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. Carbon, 2011, 49, 2022-2032.	5.4	38
112	Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosensors and Bioelectronics, 2019, 141, 111395.	5.3	38
113	A laser-induced TiO ₂ -decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chemical Communications, 2019, 55, 4945-4948.	2.2	38
114	Fabrication of PVDF hollow fiber membranes via integrated phase separation for membrane distillation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 487-494.	2.7	38
115	A 3D origami multiple electrochemiluminescence immunodevice based on a porous silver-paper electrode and multi-labeled nanoporous gold–carbon spheres. Chemical Communications, 2013, 49, 7687.	2.2	37
116	Rechargeable battery-triggered electrochemiluminescence detection on microfluidic origami immunodevice based on two electrodes. Chemical Communications, 2012, 48, 9971.	2.2	36
117	Disposable electrochemical immunosensor for simultaneous assay of a panel of breast cancer tumor markers. Analyst, The, 2012, 137, 4727.	1.7	36
118	Orientated growth of copper-based MOF for acetylene storage. Chemical Engineering Journal, 2019, 357, 320-327.	6.6	36
119	Modulated Sn Oxidation States over a Cu ₂ O-Derived Substrate for Selective Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 22760-22770.	4.0	36
120	Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communications, 2017, 5, 27-30.	3.3	35
121	Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2021, 298, 120538.	10.8	35
122	Vertically-aligned carbon nanotube membranes for hydrogen separation. RSC Advances, 2012, 2, 5329.	1.7	33
123	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie, 2020, 132, 19817-19821.	1.6	33
124	Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode. Analyst, The, 2013, 138, 4802.	1.7	32
125	A facile homogeneous electrochemical biosensing strategy based on displacement reaction for intracellular and extracellular hydrogen peroxide detection. Biosensors and Bioelectronics, 2019, 141, 111446.	5.3	32
126	Improved enzymatic activity by oriented immobilization on graphene oxide with tunable surface heterogeneity. Composites Part B: Engineering, 2021, 216, 108788.	5.9	32

#	Article	IF	CITATIONS
127	Application of Au cage/Ru(bpy)32+ nanostructures for the electrochemiluminescence detection of K562 cancer cells based on aptamer. Sensors and Actuators B: Chemical, 2015, 214, 144-151.	4.0	31
128	Anisotropic coal permeability estimation by determining cleat compressibility using mercury intrusion porosimetry and stress–strain measurements. International Journal of Coal Geology, 2019, 205, 75-86.	1.9	31
129	Electrogenerated Chemiluminescence from a Phenyleneethynylene Derivative and its Ultrasensitive Immunosensing Application Using a Nanotubular Mesoporous Pt–Ag Alloy for Signal Amplification. Advanced Functional Materials, 2012, 22, 3899-3906.	7.8	30
130	TiO2–graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay. Electrochimica Acta, 2013, 112, 620-628.	2.6	29
131	Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst, The, 2018, 143, 3327-3334.	1.7	29
132	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO ₂ Reduction. ChemSusChem, 2020, 13, 304-311.	3.6	29
133	Double-site yttria-doped Sr1â^'xYxCo1â^'yYyO3â^'Î^ perovskite oxides as oxygen semi-permeable membranes. Journal of Alloys and Compounds, 2009, 474, 477-483.	2.8	28
134	Photoelectrochemical Sensor Based on Molecularly Imprinted Polymer-Coated TiO2 Nanotubes for Lindane Specific Recognition and Detection. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 703-711.	1.9	28
135	Permeability enhancement of coal by chemical-free fracturing using high-voltage electrohydraulic discharge. Journal of Natural Gas Science and Engineering, 2018, 57, 1-10.	2.1	28
136	Interfacial microenvironment for lipase immobilization: Regulating the heterogeneity of graphene oxide. Chemical Engineering Journal, 2020, 394, 125038.	6.6	28
137	Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency. Nanoscale, 2021, 13, 7096-7107.	2.8	27
138	Evaluation of mixedâ€conducting lanthanumâ€strontiumâ€cobaltite ceramic membrane for oxygen separation. AICHE Journal, 2009, 55, 2603-2613.	1.8	26
139	Paper-based photoelectrochemical immunosensing based on CdS QD sensitized multidimensional porous ZnO spheres promoted by carbon nanotubes. Chemical Communications, 2013, 49, 10400-10402.	2.2	26
140	Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO ₂ nanoparticles/multiwalled carbon nanotubes as label. Luminescence, 2013, 28, 496-502.	1.5	25
141	Laser-Scribed <i>N</i> -Doped Graphene for Integrated Flexible Enzymatic Biofuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 12437-12442.	3.2	25
142	A near-infrared light photoelectrochemical immunosensor based on a Au-paper electrode and naphthalocyanine sensitized ZnO nanorods. Journal of Materials Chemistry B, 2014, 2, 4811.	2.9	24
143	Effect of sonication and hydrogen peroxide oxidation of carbon nanotube modifiers on the microstructure of pitch-derived activated carbon foam discs. Carbon, 2017, 124, 142-151.	5.4	24
144	A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters. Talanta, 2016, 160, 475-480.	2.9	22

#	Article	IF	CITATIONS
145	Characterisation and evaluation of shockwave generation in water conditions for coal fracturing. Journal of Natural Gas Science and Engineering, 2019, 66, 255-264.	2.1	22
146	Co-localization of glucose oxidase and catalase enabled by a self-assembly approach: Matching between molecular dimensions and hierarchical pore sizes. Food Chemistry, 2019, 275, 197-205.	4.2	21
147	Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Applied Catalysis B: Environmental, 2022, 310, 121362.	10.8	21
148	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3â^î. Ceramics International, 2009, 35, 3201-3206.	2.3	20
149	Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO ₂ reduction by using gas-diffusion electrodes. Reaction Chemistry and Engineering, 2021, 6, 345-352.	1.9	20
150	The preparation, structures, and properties of poly(vinylidene fluoride)/multiwall carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2012, 125, E592.	1.3	19
151	"Sugarcoated haws on a stick―like MWNTs–Fe3O4–C coaxial nanomaterial: Synthesis, characterization and application in electrochemiluminescence immunoassays. Biosensors and Bioelectronics, 2013, 47, 68-74.	5.3	19
152	A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light. Analytica Chimica Acta, 2014, 828, 27-33.	2.6	19
153	Visualization of latent fingerprints using a simple "silver imaging ink― Analytical Methods, 2016, 8, 6293-6297.	1.3	19
154	Effect of rheological properties of mesophase pitch and coal mixtures on pore development in activated carbon discs with high compressive strength. Fuel Processing Technology, 2018, 177, 219-227.	3.7	19
155	A novel high selectivity chemiluminescence sensor for fenvalerate based on double-sided hollow molecularly imprinted materials. Analyst, The, 2012, 137, 4247.	1.7	18
156	Difference in the cooperative interaction between carbon nanotubes and Ru particles loaded on their internal/external surface. RSC Advances, 2013, 3, 12641.	1.7	18
157	Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells. ACS Omega, 2018, 3, 2396-2405.	1.6	18
158	<i>In situ</i> growth of nano-gold on anodized aluminum oxide with tandem nanozyme activities towards sensitive electrochemical nanochannel sensing. Analyst, The, 2020, 145, 6617-6624.	1.7	18
159	Laser-Induced N- and B-Codoped Graphene Nanozymes with Intrinsic Peroxidase-Like Activities for Bactericidal Application. ACS Sustainable Chemistry and Engineering, 2022, 10, 2750-2760.	3.2	18
160	Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst, The, 2020, 145, 4041-4049.	1.7	17
161	Facile and scalable synthesis of a novel rigid artificial superoxide dismutase based on modified hollow mesoporous silica microspheres. Biosensors and Bioelectronics, 2011, 26, 1936-1941.	5.3	16
162	Triple catalysis amplification strategy for simultaneous multiplexed electrochemical immunoassays based on cactus-like MnO2 functionalized nanoporous gold. Sensors and Actuators B: Chemical, 2013, 186, 545-549.	4.0	16

#	Article	IF	CITATIONS
163	Affinity induced immobilization of adenylate cyclase from the crude cell lysate for ATP conversion. Colloids and Surfaces B: Biointerfaces, 2018, 164, 155-164.	2.5	16
164	A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite. Journal of Materials Research, 2018, 33, 538-545.	1.2	16
165	Oligonucleotide-modulated photocurrent enhancement of a tetracationic porphyrin for label-free homogeneous photoelectrochemical biosensing. Biosensors and Bioelectronics, 2018, 121, 90-95.	5.3	16
166	Crystal Facet Engineering of Copper-Based Metal–Organic Frameworks with Inorganic Modulators. Crystal Growth and Design, 2021, 21, 926-934.	1.4	16
167	Enhanced hydrogen separation by vertically-aligned carbon nanotube membranes with zeolite imidazolate frameworks as a selective layer. RSC Advances, 2012, 2, 11793.	1.7	15
168	Acetylcholinesterase-catalyzed silver deposition for ultrasensitive electrochemical biosensing of organophosphorus pesticides. Analyst, The, 2020, 145, 2339-2344.	1.7	15
169	Electropolymerized Poly(3,4-ethylendioxythiophene)/Graphene Composite Film and its Application in Quantum Dots Electrochemiluminescence Immunoassay. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 719-725.	1.9	14
170	Gas storage potential and electrohydraulic discharge (EHD) stimulation of coal seam interburden from the Surat Basin. International Journal of Coal Geology, 2019, 208, 24-36.	1.9	14
171	Carbon Monoliths by Assembling Carbon Spheres for Gas Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 4957-4969.	1.8	14
172	Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3â^'δ perovskite powder via asymmetric sol–gel process and catalytic auto-combustion. Ceramics International, 2009, 35, 2809-2815.	2.3	13
173	Facile auto-combustion synthesis for oxygen separation membrane application. Journal of Membrane Science, 2009, 329, 219-227.	4.1	13
174	Monitoring of bovine serum albumin using ultrasensitive electrochemiluminescence biosensors based on multilayer CdTe quantum dots modified indium tin oxide electrodes. Analytical Methods, 2012, 4, 460-466.	1.3	13
175	Improved adenylate cyclase activity via affinity immobilization onto co-modified GO with bio-inspired adhesive and PEI. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111888.	2.5	13
176	A novel conjugated polyfluorene: synthesis, characterization and application in label-free ECL immunoassays for biomarker detection. Journal of Materials Chemistry, 2012, 22, 5568.	6.7	12
177	Unique quenching of fluorescent copper nanoclusters based on target-induced oxidation effect: a simple, label-free, highly sensitive and specific bleomycin assay. RSC Advances, 2016, 6, 76679-76683.	1.7	12
178	Silver-Perovskite Hybrid Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, H524-H529.	1.3	12
179	Electron acceptor design for 2D/2D iodinene/carbon nitride heterojunction boosting charge transfer and CO2 photoreduction. Chemical Engineering Journal, 2022, 433, 133594.	6.6	11
180	Using "dioscorea batatas beanâ€like silver nanoparticles based localized surface plasmon resonance to enhance the fluorescent signal of zinc oxide quantum dots in a DNA sensor. Biosensors and Bioelectronics, 2014, 61, 344-350.	5.3	10

#	Article	IF	CITATIONS
181	Improving biocatalytic microenvironment with biocompatible ε-poly-l-lysine for one step gluconic acid production in low pH enzymatic systems. Process Biochemistry, 2019, 76, 118-127.	1.8	10
182	The controllable synthesis of urchin-shaped hierarchical superstructure MOFs with high catalytic activity and stability. Chemical Communications, 2021, 57, 8758-8761.	2.2	10
183	Direct-laser-writing of electrochemiluminescent electrode on glassy carbon for iodide sensing in aqueous solution. Sensors and Actuators B: Chemical, 2021, 337, 129766.	4.0	10
184	Efficient organic enrichment from sludge filtrate via a forward osmosis membrane process. Journal of Environmental Chemical Engineering, 2020, 8, 104042.	3.3	9
185	Laser-induced nano-bismuth decorated CdS–graphene hybrid for plasmon-enhanced photoelectrochemical analysis. Chemical Communications, 2020, 56, 13784-13787.	2.2	8
186	Rechargeable battery-based constant-potential electroluminescence multiplexed immunoassay on single working electrode for sequentially anodic and cathodic detection through a self-assembly toggle switch. Sensors and Actuators B: Chemical, 2013, 183, 488-495.	4.0	7
187	An experimental and simulation study of binary adsorption in metal–organic frameworks. Separation and Purification Technology, 2015, 146, 136-142.	3.9	6
188	Stabilizing bienzymatic cascade catalysis via immobilization in ZIF-8/GO composites obtained by GO assisted co-growth. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112585.	2.5	6
189	Effect of oxidation and silane surface treatments of coal powders on relative permeability in packed coal beds. Journal of Natural Gas Science and Engineering, 2019, 69, 102931.	2.1	5
190	Understanding the Effects of Anion Interactions with Ag Electrodes on Electrochemical CO 2 Reduction in Choline Halide Electrolytes. ChemSusChem, 2021, 14, 2601-2611.	3.6	5
191	High selectivity chemiluminescence sensor for determination of puerarin in diet foods/weight loss promoters based on novel rhodanine and monodisperse molecularly imprinted microspheres. Analytical Methods, 2010, 2, 1506.	1.3	4
192	Synthesis, characterization of a novel phenyleneethynylene derivative and application in a fluorescence DNA sensor. Analytical Methods, 2012, 4, 4339.	1.3	4
193	A novel high selectivity sensor for tetradifon residues based on double-side hollow molecularly imprinted materials. Analytical Methods, 2012, 4, 177-182.	1.3	4
194	A phase inversion polymer coating to prevent swelling and spalling of clay fines in coal seam gas wells. International Journal of Coal Science and Technology, 2018, 5, 179-190.	2.7	4
195	Controllable synthesis of NiCo layered double hydroxide sheets on laser-induced graphene as electrodes for high-performance supercapacitors. CrystEngComm, 0, , .	1.3	4
196	Determination of thallium(III) with novel arsenoxylphenylazo rhodanine after pre-concentration and separation. International Journal of Environmental Analytical Chemistry, 2010, 90, 1139-1147.	1.8	3
197	Synthesis of a Novel Rigid Artificial Superoxide Dismutase Based on Modified Hollow Mesoporous Silica Microspheres. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 809-815.	1.9	3
198	Study on the Controllable Scale-Up Growth of Vertically-Aligned Carbon Nanotube Arrays. Journal of Nanoscience and Nanotechnology, 2012, 12, 2722-2732.	0.9	3

#	Article	IF	CITATIONS
199	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491.	3.9	3
200	Cracking Behavior and Mechanism of Gibbsite Crystallites during Calcination. Crystal Research and Technology, 2019, 54, 1800201.	0.6	3
201	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 282-282.	3.6	2
202	Cracking behaviour and mechanism at grain boundary of gibbsite during calcination. Ceramics International, 2020, 46, 12067-12072.	2.3	2
203	Toward controlled geometric structure and surface property heterogeneities of TiO2 for lipase immobilization. Process Biochemistry, 2021, 110, 118-128.	1.8	2
204	Composite TiO ₂ Film with Quantum Dots Fabricated Through a Sol–Gel Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 2943-2947.	0.9	1
205	Revealing cracking and breakage behaviours of gibbsite particles. Ceramics International, 2021, 47, 4625-4632.	2.3	1
206	Synthesis of Highly Crystalline Titania Nanocrystals Through Solvothermal Technique. Journal of Nanoscience and Nanotechnology, 2014, 14, 3095-3099.	0.9	0
207	Modifying Catalyst-Electrolyte Interactions for Enhanced Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 1518-1518.	0.0	0