Malris Turks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/108678/publications.pdf Version: 2024-02-01

MAL DIS TUDES

#	Article	IF	CITATIONS
1	New Organic Chemistry of Sulfur Dioxide. Accounts of Chemical Research, 2007, 40, 931-942.	15.6	117
2	Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Separation and Purification Technology, 2019, 210, 764-774.	7.9	114
3	Discovery and structure–activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase. Bioorganic and Medicinal Chemistry, 2014, 22, 5988-6003.	3.0	52
4	Sulfur Dioxide Mediated One-Pot, Three- and Four-Component Syntheses of Polyfunctional Sulfonamides and Sulfonic Esters:Â Study of the Stereoselectivity of the Ene Reaction of Sulfur Dioxide. Journal of Organic Chemistry, 2004, 69, 6413-6418.	3.2	46
5	SmI2-Mediated Cyclizations of Derivatized β-Lactams for the Highly Diastereoselective Construction of Functionalized Prolines. Journal of Organic Chemistry, 2002, 67, 2411-2417.	3.2	42
6	1,2,3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof. Tetrahedron Letters, 2013, 54, 850-853.	1.4	38
7	The bora-ene reaction of sulfur dioxide and prop-2-ene-1-boronic esters. New route to sulfoxides. Tetrahedron Letters, 2006, 47, 2783-2786.	1.4	30
8	Indium‶riflateâ€Catalyzed Ritter Reaction in Liquid Sulfur Dioxide. European Journal of Organic Chemistry, 2016, 2016, 1414-1419.	2.4	30
9	Marine Natural Products with High Anticancer Activities. Current Medicinal Chemistry, 2020, 27, 1243-1307.	2.4	30
10	Expeditious Asymmetric Synthesis of a Stereoheptad Corresponding to the C(19)-C(27)-Ansa Chain of Rifamycins: Formal Total Synthesis of Rifamycin S. Chemistry - A European Journal, 2005, 11, 465-476.	3.3	28
11	Tetrahydrofuran amino acids of the past decade. Tetrahedron, 2013, 69, 10693-10710.	1.9	28
12	Metal―and Reagentâ€Free Electrochemical Synthesis of Alkyl Arylsulfonates in a Multiâ€Component Reaction. Chemistry - A European Journal, 2020, 26, 8358-8362.	3.3	27
13	Synthesis of Long-Chain Polyketide Fragments by Reaction of 1,3-Dioxy-1,3-dienes with Allylsilanes: Umpolung with Sulfur Dioxide. Organic Letters, 2004, 6, 1053-1056.	4.6	26
14	Use of sultines in the asymmetric synthesis of polypropionate antibiotics. Pure and Applied Chemistry, 2008, 80, 791-805.	1.9	26
15	Application of Metal Free Click Chemistry in Biological Studies. Current Organic Chemistry, 2013, 17, 610-640.	1.6	26
16	Anticancer Potential of Betulonic Acid Derivatives. International Journal of Molecular Sciences, 2021, 22, 3676.	4.1	26
17	Synthesis and Applications of Azolylpurine and Azolylpurine Nucleoside Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3629-3649.	2.4	25
18	The isolation and synthesis of neodolastane diterpenoids. Natural Product Reports, 2015, 32, 230-255.	10.3	25

#	Article	IF	CITATIONS
19	Sulfur dioxide mediated one-pot, four-component synthesis of polyfunctional sulfones and sulfonamides, including medium-ring cyclic derivatives. Tetrahedron, 2005, 61, 11473-11487.	1.9	24
20	First Asymmetric Synthesis of the Cyclohexanone Subunit of Baconipyrones A and B. Revision of Its Structure. Organic Letters, 2004, 6, 3031-3034.	4.6	23
21	Application of 2,6-diazidopurine derivatives in the synthesis of thiopurine nucleosides. Tetrahedron Letters, 2013, 54, 6557-6561.	1.4	22
22	Ringâ€Opening of Carbamateâ€Protected Aziridines and Azetidines in Liquid Sulfur Dioxide. European Journal of Organic Chemistry, 2016, 2016, 1760-1771.	2.4	21
23	A concise synthesis of sugar isoxazole conjugates. Tetrahedron Letters, 2013, 54, 5328-5331.	1.4	20
24	Development of N6-methyl-2-(1,2,3-triazol-1-yl)-2′-deoxyadenosine as a novel fluorophore and its application in nucleotide synthesis. Tetrahedron Letters, 2016, 57, 1174-1178.	1.4	20
25	Delivery Systems for Birch-bark Triterpenoids and their Derivatives in Anticancer Research. Current Medicinal Chemistry, 2020, 27, 1308-1336.	2.4	20
26	Total Synthesis and Determination of the Absolute Configuration of (â^')â€Ðolabriferol. Angewandte Chemie - International Edition, 2010, 49, 8525-8527.	13.8	19
27	Lupane-type conjugates with aminoacids, 1,3,4- oxadiazole and 1,2,5-oxadiazole-2-oxide derivatives: Synthesis, anti-inflammatory activity and in silico evaluation of target affinity. Steroids, 2019, 150, 108443.	1.8	19
28	Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines. Beilstein Journal of Organic Chemistry, 2019, 15, 474-489.	2.2	19
29	Synthesis of Sulfones <i>via</i> Ru(II)-Catalyzed Sulfination of Boronic Acids. Journal of Organic Chemistry, 2020, 85, 5660-5669.	3.2	19
30	BrÃ,nsted Acid Catalyzed 1,2-Silyl Shift in Propargyl Silanes: Synthesis of Silyl Dienes and Silyl Indenes. Journal of Organic Chemistry, 2019, 84, 3595-3611.	3.2	18
31	All-organic fast intersystem crossing assisted exciplexes exhibiting sub-microsecond thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 4532-4543.	5.5	18
32	Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites. Journal of Crystal Growth, 2016, 444, 14-20.	1.5	17
33	Modern approaches for SO2 insertion in heterocyclic synthesis (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 584-586.	1.2	17
34	Synthesis of (<i>E</i> , <i>Z</i>)-1-Alkoxy-3-acyloxy-2-methylpenta-1,3-dienes via Danishefsky-Type Dienes or <i>O</i> -Acylation of Enones. Journal of Organic Chemistry, 2009, 74, 8882-8885.	3.2	16
35	Synthesis of cytotoxic urs-12-ene- and 28-norurs-12-ene- type conjugates with amino- and mercapto-1,3,4-oxadiazoles and mercapto-1,2,4-triazoles. Steroids, 2020, 153, 108524.	1.8	16
36	Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids, 2020, 162, 108698.	1.8	16

#	Article	lF	CITATIONS
37	Synthesis of 1,2,3-triazole-linked galactohybrids and their inhibitory activities on galectins. Arkivoc, 2014, 2014, 90-112.	0.5	16
38	Synthesis of triazole-functionalized tetrahydroindazolones by 1,3-dipolar cycloadditions between azides and alkynes. Tetrahedron Letters, 2009, 50, 3046-3049.	1.4	15
39	A practical access to glucose- and allose-based (5+5) 3-spiropseudonucleosides from a common intermediate. Carbohydrate Research, 2013, 375, 5-15.	2.3	15
40	Recent investigations and applications of azidoazomethine-tetrazole tautomeric equilibrium (microreview). Chemistry of Heterocyclic Compounds, 2019, 55, 1041-1043.	1.2	15
41	A facile synthesis of 4-acylamino-tetrahydroindazoles via the Ritter reaction. Tetrahedron, 2012, 68, 6131-6140.	1.9	14
42	On Moffatt dehydration of glucose-derived nitro alcohols. Carbohydrate Research, 2012, 350, 86-89.	2.3	14
43	Non-activated aziridines as building blocks for the synthesis of aza-heterocycles (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 773-775.	1.2	14
44	Synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage. Steroids, 2017, 117, 77-89.	1.8	14
45	Applications of Purine Ring Opening in the Synthesis of Imidazole, Pyrimidine, and New Purine Derivatives. European Journal of Organic Chemistry, 2021, 2021, 5027-5052.	2.4	14
46	Synthesis of allyl sulfoxides from allylsilanes via silyl sulfinates. Tetrahedron Letters, 2015, 56, 4578-4581.	1.4	13
47	Synthesis of allyl sulfones from potassium allyltrifluoroborates. Tetrahedron Letters, 2017, 58, 2727-2731.	1.4	13
48	In(III) and Hf(IV) Triflate-Catalyzed Hydration and Catalyst-free Hydrohalogenation of Aryl Acetylenes in Liquid Sulfur Dioxide. ACS Omega, 2018, 3, 18065-18077.	3.5	13
49	Electrosynthesis of Stable Betulinâ€Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupaneâ€Type Triterpenoidâ€Isoxazole Conjugates. European Journal of Organic Chemistry, 2021, 2021, 2557-2577.	2.4	13
50	Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds. Radiation Physics and Chemistry, 2013, 92, 93-98.	2.8	12
51	Synthesis of purine nucleoside—amino acid conjugates and their photophysical properties. Tetrahedron, 2016, 72, 4177-4185.	1.9	12
52	Novel 3-C-aminomethyl-hexofuranose-derived thioureas and their testing in asymmetric catalysis. Tetrahedron: Asymmetry, 2015, 26, 952-960.	1.8	11
53	Sulfonyl Group Dance: A Tool for the Synthesis of 6-Azido-2-sulfonylpurine Derivatives. Journal of Organic Chemistry, 2020, 85, 4753-4771.	3.2	11
54	Photophysical and Electrical Properties of Highly Luminescent 2/6-Triazolyl-Substituted Push–Pull Purines. ACS Omega, 2022, 7, 5242-5253.	3.5	11

#	Article	IF	CITATIONS
55	Efficient Asymmetric Synthesis of Longâ€Chain Polyketides Containing up to Ten Contiguous Stereogenic Centres by Double Chain Elongation. European Journal of Organic Chemistry, 2011, 2011, 3317-3328.	2.4	10
56	Concise Synthesis of Complicated Polypropionates through Oneâ€Pot Dissymmetrical Twoâ€Directional Chain Elongation. Chemistry - A European Journal, 2011, 17, 4246-4253.	3.3	10
57	Synthesis of novel 3-deoxy-3-C-triazolylmethyl-allose derivatives and evaluation of their biological activity. Open Chemistry, 2012, 10, 386-394.	1.9	10
58	Regioselective Ring Opening of N-H-Aziridines with Sulfur Nucleophiles in Liquid SO2. Synlett, 2017, 28, 939-943.	1.8	10
59	Manifestation of the β-Silicon Effect in the Reactions of Unsaturated Systems Involving a 1,2-Silyl Shift. Synthesis, 2020, 52, 2147-2161.	2.3	10
60	Resolution, absolute configuration, and synthetic transformations of 7-amino-tetrahydroindazolones. Tetrahedron: Asymmetry, 2011, 22, 728-739.	1.8	9
61	A novel matrix metalloproteinase-2 inhibitor triazolylmethyl aziridine reduces melanoma cell invasion, angiogenesis and targets ERK1/2 phosphorylation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 765-772.	5.2	9
62	Synthesis and Applications of Silyl 2â€Methylpropâ€2â€eneâ€1â€sulfinates in Preparative Silylation and GCâ€Derivatization Reactions of Polyols and Carbohydrates. Chemistry - A European Journal, 2016, 22, 4196-4205.	3.3	9
63	Total Asymmetric Syntheses of β-Hydroxy-δ-lactones via Umpolung with Sulfur Dioxide. Journal of Organic Chemistry, 2011, 76, 840-845.	3.2	8
64	Synthesis of Building Blocks for Carbopeptoids and Their Triazole Isoster Assembly. European Journal of Organic Chemistry, 2015, 2015, 5572-5584.	2.4	8
65	Synthesis of Novel 2- And 6-Alkyl/Arylthiopurine Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1236-1241.	1.6	8
66	Synthesis of Optically Active 5-Alkoxy-6-methylcyclohex-2-en-1-ones and 4-Alkoxy-5-methylcyclopent-1-enyl Benzoate. Journal of Organic Chemistry, 2009, 74, 435-437.	3.2	7
67	Easy Access to Isomeric 7-Deazapurine–1,2,3-Triazole Conjugates via SNAr and CuAAC Reactions of 2,6-Diazido-7-deazapurines. Synlett, 2018, 29, 525-529.	1.8	7
68	Synthesis and X-ray studies of novel 3-C-nitromethyl-hexofuranoses. Carbohydrate Research, 2014, 391, 82-88.	2.3	6
69	Synthesis of monomeric methylene-linked 1,2,3-triazole glycoconjugates from allo- and glucofuranoses. Chemistry of Heterocyclic Compounds, 2015, 51, 883-890.	1.2	6
70	Synthesis of 1,2,3-triazole-linked glycohybrids in the gluco-, gulo-, and allopyranose series. Chemistry of Heterocyclic Compounds, 2015, 51, 664-671.	1.2	6
71	Proof of principle of a purine D–A–D′ ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Physical Chemistry Chemical Physics, 2020, 22, 26502-26508. ————————————————————————————————————	2.8	6
72	Application of Azide-Tetrazole Tautomerism and Arylsulfanyl Group Dance in the Synthesis of Thiosubstituted Tetrazoloquinazolines. Synthesis, 2021, 53, 1443-1456.	2.3	6

#	Article	IF	CITATIONS
73	1,2,3-Triazoles as leaving groups in S _N Ar–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives. Beilstein Journal of Organic Chemistry, 2021, 17, 193-202.	2.2	6
74	Metal-free glycosylation with glycosyl fluorides in liquid SO ₂ . Beilstein Journal of Organic Chemistry, 2021, 17, 964-976.	2.2	6
75	Nucleophile–nucleofuge duality of azide and arylthiolate groups in the synthesis of quinazoline and tetrazoloquinazoline derivatives. Organic and Biomolecular Chemistry, 2021, 19, 7706-7723.	2.8	6
76	Synthesis and photophysical properties of 2-azolyl-6-piperidinylpurines. Chemistry of Heterocyclic Compounds, 2021, 57, 560-567.	1.2	5
77	Synthesis of water-soluble ester-linked ursolic acid–gallic acid hybrids with various hydrolytic stabilities. Synthetic Communications, 2021, 51, 2466-2477.	2.1	5
78	Synthesis and Cytotoxicity of Sulfanyl, Sulfinyl and Sulfonyl Group Containing Ursane Conjugates with 1,3,4â€Oxadiazoles and 1,2,4â€Triazoles. ChemistrySelect, 2021, 6, 6472-6477.	1.5	5
79	Rapid Catalytic Water Disinfection from Earth Abundant Ca ₂ Fe ₂ O ₅ Brownmillerite. Advanced Sustainable Systems, 2021, 5, 2100130.	5.3	5
80	Synthesis and Xâ€ray analysis of 7â€bromoarbidol, an impurity standard of arbidol. Journal of Heterocyclic Chemistry, 2011, 48, 724-728.	2.6	4
81	Synthesis and Immunological Evaluation of Virus-Like Particle-Milbemycin A3/A4 Conjugates. Antibiotics, 2017, 6, 18.	3.7	4
82	Synthesis of 3-Silylated 3-Sulfolenes from Propargylsilanes and their Reductive Desulfitation. Chemistry of Heterocyclic Compounds, 2021, 57, 20-25.	1.2	4
83	Synthesis of Enantiomerically Enriched 2-Substituted Pyrrolidine Analogues of Norhygrine. Applicatin of the Hetero-Diels-Alder Addition of Sulfur Dioxide. Heterocycles, 2007, 72, 681.	0.7	3
84	Umpolung with Sulfur Dioxide: Carbon-Carbon Cross-Coupling of Electron-Rich 1,3-Dienes and Alkenes; Application to the Enantioselective Synthesis of Long-Chain Polyketide Fragments. Synthesis, 2009, 2009, 1065-1074.	2.3	3
85	Crystal structures of two (±)-exo-N-isobornylacetamides. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1117-1120.	0.5	3
86	Synthesis of 2-triazolylpurine Phosphonates. Chemistry of Heterocyclic Compounds, 2021, 57, 55-62.	1.2	3
87	1,2,3-Triazoles as leaving groups: S _N Ar reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles. Beilstein Journal of Organic Chemistry, 2021, 17, 410-419.	2.2	3
88	Toward unsymmetrical 2,6-bistriazolylpurine nucleosides. Chemistry of Heterocyclic Compounds, 2021, 57, 292-297.	1.2	3
89	{(3a <i>R</i> ,5 <i>S</i> ,6 <i>R</i> ,6a <i>R</i>)-5-[(<i>R</i>)-1,2-Dihydroxyethyl]-2,2-dimethyltetrahydrofuro[2, methanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o524-o525.	3- <i>d</i>] 0.2	[1,3]dioxol-6-
90	User Friendly Synthesis of Vogel'S Silyl Sulfinate and its Application in Quantitative Gc–Ms Analysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1251-1256.	1.6	2

#	Article	IF	CITATIONS
91	Structural characterization of cevimeline and its trans -impurity by single crystal XRD. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 404-409.	2.8	2
92	Purine-Furan and Purine-Thiophene Conjugates. MolBank, 2018, 2018, M1024.	0.5	2
93	Rupe Rearrangement Studies in Liquid Sulfur Dioxide. Key Engineering Materials, 2019, 800, 42-46.	0.4	2
94	Generation of 1-azabicyclo[3.2.1]octane and 5-azatricyclo[3.2.1.02,7]octane systems by carbenium ion rearrangements during production of the antihistamine drug Quifenadine. Tetrahedron Letters, 2020, 61, 151405.	1.4	2
95	The Synthesis and X-ray Studies of 6-pyrrolidinyl-2-triazolyl Purine Arabinonucleoside. Material Science & Applied Chemistry, 2013, 28, 39.	0.1	2
96	Synthesis of 7-Arylpurines from Substituted Pyrimidines. Synthesis, 0, , .	2.3	2
97	2,6-Dichloro-9-(2′,3′,5′-tri- <i>O</i> -acetyl-β- <scp>D</scp> -ribofuranosyl)-9 <i>H</i> -purine. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o108-o109.	0.2	1
98	Betulin 3,28-di-O-tosylate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o879-o880.	0.2	1
99	Crystal structure of 3-C-(N-benzyloxycarbonyl)aminomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-allofuranose. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1212-1215.	0.5	1
100	Study on Synthesis of <i>N</i> -Protected 2-Triazolyl Azetidines. Key Engineering Materials, 2018, 762, 19-24.	0.4	1
101	Diastereoselective aza-Michael addition for synthesis of carbohydrate-derived spiropiperazinones. Monatshefte Für Chemie, 2019, 150, 21-28.	1.8	1
102	Ring opening of methylenecyclopropanes with halides in liquid sulfur dioxide. Tetrahedron Letters, 2020, 61, 152528.	1.4	1
103	Synthesis of Azido and Triazolyl Purine Ribonucleosides. Current Protocols, 2021, 1, e241.	2.9	1
104	Crystal structure of 3-O-benzyl-4(R)-C-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,2-O-isopropylidene-α-D-erythrofuranose. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1542-1544.	0.5	1
105	Energy level determination of purine containing blue light emitting organic compounds. , 2018, , .		1
106	Synthesis and Antioxidant Activity of New N-Containing Hybrid Derivatives of Gallic and Ursolic Acids. Chemistry of Natural Compounds, 2021, 57, 1042-1046.	0.8	1
107	Synthesis and Photophysical Properties of Purine-Phenoxazine and Purine-Phenothiazine Conjugates. Key Engineering Materials, 0, 903, 155-161.	0.4	1
108	Synthesis of 8-Aminoquinoline Amides of Ursonic and Oleanonic Acid. MolBank, 2022, 2022, M1361.	0.5	1

#	Article	IF	CITATIONS
109	Sulfur Dioxide Mediated One-Pot, Three- and Four-Component Syntheses of Polyfunctional Sulfonamides and Sulfonic Esters: Study of the Stereoselectivity of the Ene Reaction of Sulfur Dioxide ChemInform, 2005, 36, no.	0.0	0
110	Novel Ciprofloxacin Derivatives for Polymer-Based Drug Delivery Systems. Key Engineering Materials, 2018, 762, 36-41.	0.4	0
111	Synthesis of Tetrahydroindazole-Triazole Conjugates and their Derivatization by the Ritter Reaction. Key Engineering Materials, 2018, 762, 25-30.	0.4	0
112	2,6-Bis[4-(4-butylphenyl)-1H-1,2,3-triazol-1-yl]-9-dodecyl-9H-purine. MolBank, 2019, 2019, M1073.	0.5	0
113	Glucose - and Allose-Derived Chiral Auxiliaries. Key Engineering Materials, 0, 800, 36-41.	0.4	0
114	Crystal structure of methanolsodium dianemycin — methanol (1:2), Na(C47H77O14)(CH4O) · 2CH4O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, .	0.3	0
115	Characteristics of the Coagulate Obtained During the Process of Model Wastewater Treatment. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 0, 1, 9.	0.0	0
116	Crystal structure of 3,6,6-trimethyl-4-oxo-1-(pyridin-2-yl)-4,5,6,7-tetrahydro-1 <i>H</i> -indazol-7-aminium chloride and its monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1931-1936.	0.5	0