
Shuang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10867411/publications.pdf Version: 2024-02-01

SHUANG CAO

#	Article	IF	CITATIONS
1	Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Research, 2022, 15, 2013-2022.	10.4	43
2	Emerging Photocatalysts for Hydrogen Evolution. Trends in Chemistry, 2020, 2, 57-70.	8.5	131
3	Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy, 2020, 67, 104287.	16.0	124
4	Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region. Chinese Journal of Catalysis, 2020, 41, 219-226.	14.0	21
5	Considerations for a More Accurate Evaluation Method for Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 18468-18476.	2.0	22
6	Water as a cocatalyst for photocatalytic H2 production from formic acid. Nano Today, 2020, 35, 100968.	11.9	23
7	Considerations for a More Accurate Evaluation Method for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 18312-18320.	13.8	141
8	Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 2020, 13, 2313-2322.	10.4	148
9	Mesoporous TiO2 mixed crystals for photocatalytic pure water splitting. Science China Materials, 2020, 63, 758-768.	6.3	11
10	Visible light driven photo-reduction of Cu2+ to Cu2O to Cu in water for photocatalytic hydrogen production. RSC Advances, 2020, 10, 5930-5937.	3.6	21
11	Effect of aspect ratios of rutile TiO ₂ nanorods on overall photocatalytic water splitting performance. Nanoscale, 2020, 12, 4895-4902.	5.6	36
12	Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chinese Journal of Catalysis, 2019, 40, 470-475.	14.0	66
13	Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catalysis Today, 2019, 330, 246-251.	4.4	13
14	Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. Angewandte Chemie - International Edition, 2018, 57, 6279-6283.	13.8	57
15	Ultrasmall CoP Nanoparticles as Efficient Cocatalysts for Photocatalytic Formic Acid Dehydrogenation. Joule, 2018, 2, 549-557.	24.0	126
16	What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation?. Applied Catalysis B: Environmental, 2018, 220, 471-476.	20.2	42
17	Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. Angewandte Chemie, 2018, 130, 6387-6391.	2.0	19
18	A Ni ₂ P modified Ti ⁴⁺ doped Fe ₂ O ₃ photoanode for efficient solar water oxidation by promoting hole injection. Dalton Transactions, 2017, 46, 10549-10552.	3.3	30

Shuang Cao

#	Article	IF	CITATIONS
19	The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. Nano Energy, 2017, 41, 488-493.	16.0	51
20	Metal Phosphides as Co-Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting. ChemSusChem, 2017, 10, 4227-4227.	6.8	4
21	Metal Phosphides as Coâ€Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting. ChemSusChem, 2017, 10, 4306-4323.	6.8	150
22	Highly selective oxidation of sulfides on a CdS/C ₃ N ₄ catalyst with dioxygen under visible-light irradiation. Catalysis Science and Technology, 2017, 7, 587-595.	4.1	58
23	Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. Scientific Reports, 2016, 6, 19846.	3.3	94
24	Nanostructured Ni ₂ P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. Angewandte Chemie - International Edition, 2015, 54, 15725-15729.	13.8	204
25	Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces, 2015, 7, 28412-28419.	8.0	187
26	Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 6096-6101.	10.3	161
27	Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chemical Communications, 2015, 51, 8708-8711.	4.1	210
28	Incorporation of a [Ru(dcbpy)(bpy) ₂] ²⁺ photosensitizer and a Pt(dcbpy)Cl ₂ catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. Journal of Materials Chemistry A, 2015, 3, 10386-10394.	10.3	131
29	Enhanced photocatalytic H ₂ -evolution by immobilizing CdS nanocrystals on ultrathin Co _{0.85} Se/RGO–PEI nanosheets. Journal of Materials Chemistry A, 2015, 3, 18711-18717.	10.3	51
30	A highly efficient photocatalytic H 2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Applied Catalysis B: Environmental, 2015, 162, 381-391.	20.2	76
31	Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chemical Communications, 2014, 50, 10427.	4.1	175
32	A stable dual-functional system of visible-light-driven Ni(ii) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production. Chemical Communications, 2013, 49, 11251.	4.1	48