Suvajit Koley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10867369/publications.pdf

Version: 2024-02-01

414414 516710 1,047 33 16 32 citations g-index h-index papers 54 54 54 1404 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in Transition Metalâ€Catalyzed Functionalization of <i>gem</i> å€Difluoroalkenes. Israel Journal of Chemistry, 2020, 60, 313-339.	2.3	102
2	Connecting remote C–H bond functionalization and decarboxylative coupling using simple amines. Nature Chemistry, 2020, 12, 489-496.	13.6	41
3	Siteâ€Specific Sâ€Allylation of αâ€Enolic Dithioesters with Moritaâ€Baylisâ€Hillman Acetates at Room Temperature: Precursor for Thiopyrans. Advanced Synthesis and Catalysis, 2019, 361, 4091-4105.	4.3	14
4	Catalystâ€Free Oneâ€Pot Access to Pyrazoles and Disulfideâ€Tethered Pyrazoles via Deamidative Heteroannulation of βâ€Ketodithioesters with Semicarbazide Hydrochloride in Water. Advanced Synthesis and Catalysis, 2018, 360, 1780-1785.	4.3	7
5	2â€Mercaptoquinoline Analogues: A Potent Antileishmanial Agent. ChemistrySelect, 2018, 3, 1688-1692.	1.5	7
6	Cross-Dehydrogenating Coupling of Aldehydes with Amines/R-OTBS Ethers by Visible-Light Photoredox Catalysis: Synthesis of Amides, Esters, and Ureas. Organic Letters, 2018, 20, 5861-5865.	4.6	59
7	Dithioester-enabled chemodivergent synthesis of acids, amides and isothiazoles via C C bond cleavage and C O/C N/C S bond formations under metal- and catalyst-free conditions. Tetrahedron Letters, 2017, 58, 2512-2516.	1.4	13
8	Chemo- and regio-selective synthesis of hexacyclic indeno-fused coumarins via domino Diels–Alder dimerization/Baeyer–Villiger oxidation. Tetrahedron, 2016, 72, 5903-5908.	1.9	7
9	Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72, 5257-5283.	1.9	238
10	Switching Selectivity of \hat{l}_{\pm} -Enolic Dithioesters: One Pot Access to Functionalized 1,2- and 1,3-Dithioles. Journal of Organic Chemistry, 2016, 81, 11594-11602.	3.2	19
11	Acidâ€Controlled Chemodivergent Synthesis of Three Differently Substituted Quinolines <i>via</i> Site Selective Coupling of <i>ortho</i> ―Aminoaryl Ketones with αâ€Enolic Dithioesters. Advanced Synthesis and Catalysis, 2016, 358, 1195-1201.	4.3	19
12	Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron, 2016, 72, 1603-1644.	1.9	155
13	Metal-free Brønsted acid mediated synthesis of fully substituted thiophenes via chemo- and regioselective intramolecular cyclization of α,α′-bis(β-oxodithioesters) at room temperature. Organic and Biomolecular Chemistry, 2016, 14, 434-439.	2.8	16
14	Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect FriedlÅ r der annulation. Organic and Biomolecular Chemistry, 2015, 13, 9570-9574.	2.8	38
15	Organoindium mediated Csp3–S cross-coupling/migratory allenylation/thioannulation cascade: expedient synthesis of highly substituted thiophene frameworks. Tetrahedron, 2015, 71, 1844-1850.	1.9	11
16	Synthesis of 3-hydroxyindanones via potassium salt of amino acid catalyzed regioselective intramolecular aldolization of ortho-diacylbenzenes. Tetrahedron Letters, 2015, 56, 981-985.	1.4	13
17	Metalâ€Free Reagent Dependent SS and CC Homocoupling of αâ€Enolic Dithioesters at Room Temperature: Direct Access to Fully Substituted Symmetrical Thiophenes <i>via</i> Chemoselective Paal–Knorr Approach. Advanced Synthesis and Catalysis, 2015, 357, 530-538.	4.3	22
18	Ligand―and Baseâ€Free Cu ^{II} â€Mediated Selective <i>S</i> â€Arylation of αâ€Enolic Dithioesters b Chan–Lam Coupling at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 409-416.	^y 2.4	12

#	Article	IF	CITATIONS
19	Thionyl chloride mediated dehydroxylation of 3-hydroxyindanones to indenones. Tetrahedron Letters, 2015, 56, 4603-4606.	1.4	4
20	Iodine-Mediated Annulation of S-Allylated \hat{l} ±-Enolic Dithioesters: Rapid Access to 2-Alkylidene-1,3-dithiolanes at Room Temperature. Synthesis, 2015, 47, 1510-1518.	2.3	7
21	Copper-catalyzed site-selective S–S and C–C homocoupling of α-enolic dithioesters: straightforward and efficient access to 1,2-dithiols. Tetrahedron Letters, 2015, 56, 2593-2596.	1.4	5
22	In/I2 mediated functional group transformation: a direct approach toward the selective conversion of dithioester to ester. Tetrahedron Letters, 2015, 56, 5553-5556.	1.4	3
23	CuSO ₄ – <scp>d</scp> -glucose, an inexpensive and eco-efficient catalytic system: direct access to diverse quinolines through modified Friedläder approach involving S _N Ar/reduction/annulation cascade in one pot. RSC Advances, 2015, 5, 7654-7660.	3.6	36
24	Lewis acid mediated three-component one-flask regioselective synthesis of densely functionalized 4-amino-1,2-dihydropyridines via cascade Knoevenagel/Michael/cyclization sequence. Tetrahedron, 2015, 71, 301-307.	1.9	14
25	Regioselective quadruple domino aldolization/aldol condensation/Michael/SNAr-cyclization: construction of hexacyclic indeno-fused C-nor-D-homo-steroid frameworks. Tetrahedron, 2014, 70, 2190-2194.	1.9	11
26	Indium(0)â€Mediated C–S/O Crossâ€Coupling Approach Towards the Regioselective Alkylation of αâ€Enolic Esters/Dithioesters: A Mechanistic Insight. European Journal of Organic Chemistry, 2014, 2014, 2014, 2964-2971.	2.4	17
27	Lewis acid promoted construction of chromen-4-one and isoflavone scaffolds via regio- and chemoselective domino Friedel–Crafts acylation/Allan–Robinson reaction. Organic and Biomolecular Chemistry, 2014, 12, 9216-9222.	2.8	8
28	Regioselective Synthesis of Dihydrothiophene and Thiopyran Frameworks via Catalyst-Controlled Intramolecular C _γ /C _δ –S Fusion of α-Allyl-β′-oxodithioesters. Organic Letters, 201-16, 5536-5539.	4,4.6	31
29	Ironâ€Promoted Domino Annulation of αâ€Enolic Dithioesters with Ninhydrin under Solventâ€Free Conditions: Chemoselective Direct Access to Indeno[1,2â€ <i>b</i>) thiophenes. European Journal of Organic Chemistry, 2014, 2014, 5501-5508.	2.4	12
30	Regioselective dehydrative intramolecular heteroannulation of \hat{l}^2 -allyl- \hat{l}^2 -hydroxy dithioesters: facile and straightforward entry toÂ2H-thiopyrans. Tetrahedron, 2014, 70, 914-918.	1.9	27
31	Y(OTf)3 catalyzed substitution dependent oxidative C(sp3)–C(sp3) cleavage and regioselective dehydration of \hat{l}^2 -allyl- \hat{l}^2 -hydroxydithioesters: alternate route to \hat{l}_{\pm} , \hat{l}^2 -unsaturated ketones and functionalized dienes. Tetrahedron, 2013, 69, 8899-8903.	1.9	12
32	Palladium Catalyzed Oxidative Coupling of \hat{l} ±-Enolic Dithioesters: A New Entry to 3,4,5-Trisubstituted 1,2-Dithioles via a Double Activation Strategy. Organic Letters, 2013, 15, 5386-5389.	4.6	34
33	Diversity oriented catalyst-free and solvent-free one-pot MCR at room temperature: rapid and regioselective convergent approach to highly functionalized dihydro-4H-thiopyrans. Tetrahedron, 2013, 69, 8013-8018.	1.9	31