
Richard L Valentine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10866374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science, 2003, 20, 389-404.	0.8	571
2	Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research, 2002, 36, 817-824.	5.3	384
3	Reaction scheme for the chlorination of ammoniacal water. Environmental Science & Technology, 1992, 26, 577-586.	4.6	377
4	Chemistry and Microbiology of Permeable Reactive Barriers forIn SituGroundwater Clean up. Critical Reviews in Environmental Science and Technology, 2000, 30, 363-411.	6.6	256
5	Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide. Journal of Environmental Engineering, ASCE, 1998, 124, 31-38.	0.7	180
6	Chemistry and Microbiology of Permeable Reactive Barriers forIn SituGroundwater Clean up. Critical Reviews in Microbiology, 2000, 26, 221-264.	2.7	142
7	Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Research, 2010, 44, 4570-4580.	5.3	136
8	N-Nitrosodimethylamine Formation by Free-Chlorine-Enhanced Nitrosation of Dimethylamine. Environmental Science & Technology, 2003, 37, 4871-4876.	4.6	129
9	Formation of <i>N</i> -Nitrosodimethylamine (NDMA) from Humic Substances in Natural Water. Environmental Science & Technology, 2007, 41, 6059-6065.	4.6	103
10	Effect of Natural Organic Matter on Monochloramine Decomposition:Â Pathway Elucidation through the Use of Mass and Redox Balances. Environmental Science & Technology, 1998, 32, 1409-1416.	4.6	101
11	Modeling monochloramine loss in the presence of natural organic matter. Water Research, 2005, 39, 3418-3431.	5.3	98
12	Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton's reagent. Water Research, 1996, 30, 2579-2586.	5.3	95
13	The Influence of the Pre-Oxidation of Natural Organic Matter on the Formation of <i>N</i> -Nitrosodimethylamine (NDMA). Environmental Science & Technology, 2008, 42, 5062-5067.	4.6	80
14	General acid catalysis of monochloramine disproportionation. Environmental Science & Technology, 1988, 22, 691-696.	4.6	75
15	Iron Oxide Surface-Catalyzed Oxidation of Ferrous Iron by Monochloramine:Â Implications of Oxide Type and Carbonate on Reactivity. Environmental Science & Technology, 2002, 36, 512-519.	4.6	73
16	Modeling the Formation of N-Nitrosodimethylamine (NDMA) from the Reaction of Natural Organic Matter (NOM) with Monochloramine. Environmental Science & Technology, 2006, 40, 7290-7297.	4.6	68
17	Reaction Pathways Involved in the Reduction of Monochloramine by Ferrous Iron. Environmental Science & Technology, 2000, 34, 83-90.	4.6	63
18	The Release of Lead from the Reduction of Lead Oxide (PbO ₂) by Natural Organic Matter. Environmental Science & Technology, 2008, 42, 760-765.	4.6	62

#	Article	IF	CITATIONS
19	Reduction of Lead Oxide (PbO ₂) and Release of Pb(II) in Mixtures of Natural Organic Matter, Free Chlorine and Monochloramine. Environmental Science & Technology, 2009, 43, 3872-3877.	4.6	55
20	Reduction of Lead Oxide (PbO ₂) by lodide and Formation of lodoform in the PbO ₂ /I ^{â^'} /NOM System. Environmental Science & Technology, 2008, 42, 2919-2924.	4.6	52
21	A spectrophotometric study of the formation of an unidentified monochloramine decomposition product. Water Research, 1986, 20, 1067-1074.	5.3	50
22	Release of Pb(II) from Monochloramine-Mediated Reduction of Lead Oxide (PbO ₂). Environmental Science & Technology, 2008, 42, 9137-9143.	4.6	50
23	Dichloramine decomposition in the presence of excess ammonia. Water Research, 1987, 21, 967-973.	5.3	41
24	Bromide Oxidation and Formation of Dihaloacetic Acids in Chloraminated Water. Environmental Science & amp; Technology, 2007, 41, 7047-7053.	4.6	40
25	Occurrence of trace inorganic contaminants in drinking water distribution systems. Journal - American Water Works Association, 2012, 104, E181.	0.2	38
26	Modeling the Kinetics of Ferrous Iron Oxidation by Monochloramine. Environmental Science & Technology, 2002, 36, 662-668.	4.6	35
27	The effect of static magnetic fields on biological systems: Implications for enhanced biodegradation. Critical Reviews in Environmental Science and Technology, 1997, 27, 319-382.	6.6	33
28	Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter. Water Research, 2006, 40, 2667-2674.	5.3	31
29	Monochloramine loss in the presence of humic acid. Journal of Environmental Monitoring, 2002, 4, 85-89.	2.1	29
30	Evaluation of a chloramine decomposition model incorporating general acid catalysis. Water Research, 1988, 22, 1147-1153.	5.3	25
31	N-Functionalized Carbon Nanotubes As a Source and Precursor of <i>N</i> -Nitrosodimethylamine: Implications for Environmental Fate, Transport, and Toxicity. Environmental Science & Technology, 2014, 48, 9279-9287.	4.6	23
32	An unidentified chloramine decomposition product—I. Chemistry and characteristics. Water Research, 1994, 28, 1475-1483.	5.3	16
33	Modeling the Decomposition of Disinfecting Residuals of Chloramine. ACS Symposium Series, 1996, , 115-125.	0.5	16
34	Kinetics of Monochloramine Reactions with Nitrite. Journal of Environmental Engineering, ASCE, 1994, 120, 859-874.	0.7	12
35	An unidentified chloramine decomposition product-II. A proposed formation mechanism. Water Research, 1994, 28, 1485-1495.	5.3	9
36	Application of Product Studies in the Elucidation of Chloramine Reaction Pathways. ACS Symposium Series, 1996, , 105-114.	0.5	5

#	Article	IF	CITATIONS
37	Formation of trihalomethanes and haloacetic acids during chlorination of functionalized carbon nanotubes. Environmental Science: Nano, 2016, 3, 1327-1339.	2.2	4
38	A Journey with Jerry. Environmental Science & amp; Technology, 2016, 50, 6595-6595.	4.6	0