Dimitrios Moshou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learning in Agriculture: A Review. Sensors, 2018, 18, 2674.	2.1	1,392
2	Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 2010, 74, 2-33.	3.7	390
3	Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 2016, 121, 57-65.	3.7	372
4	Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering, 2016, 152, 104-116.	1.9	331
5	Automatic detection of â€~yellow rust' in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 2004, 44, 173-188.	3.7	267
6	THEPOTENTIAL OFOPTICALCANOPYMEASUREMENT FORTARGETEDCONTROL OFFIELDCROPDISEASES. Annual Review of Phytopathology, 2003, 41, 593-614.	3.5	258
7	Early Disease Detection in Wheat Fields using Spectral Reflectance. Biosystems Engineering, 2003, 84, 137-145.	1.9	227
8	Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Computers and Electronics in Agriculture, 2019, 156, 96-104.	3.7	223
9	Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imaging, 2005, 11, 75-83.	1.6	178
10	Contribution of Remote Sensing on Crop Models: A Review. Journal of Imaging, 2018, 4, 52.	1.7	149
11	Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels. Renewable Energy, 2013, 50, 27-32.	4.3	116
12	Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering, 2016, 146, 193-202.	1.9	109
13	Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering, 2011, 108, 311-321.	1.9	79
14	Bruise detection on â€~Golden Delicious' apples by vis/NIR spectroscopy. Computers and Electronics in Agriculture, 2006, 52, 11-20.	3.7	67
15	A machine learning approach for the condition monitoring of rotating machinery. Journal of Mechanical Science and Technology, 2014, 28, 61-71.	0.7	65
16	Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Computers and Electronics in Agriculture, 2017, 139, 224-230.	3.7	65
17	Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosystems Engineering, 2014, 117, 15-22.	1.9	58
18	Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. Precision Agriculture, 2017, 18, 383-393.	3.1	55

DIMITRIOS MOSHOU

#	Article	IF	CITATIONS
19	A neural network based plant classifier. Computers and Electronics in Agriculture, 2001, 31, 5-16.	3.7	54
20	Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precision Agriculture, 2006, 7, 149-164.	3.1	54
21	AP—Animal Production Technology. Biosystems Engineering, 2001, 79, 449-457.	0.4	53
22	Evaluation of UAV imagery for mapping <i>Silybum marianum</i> weed patches. International Journal of Remote Sensing, 2017, 38, 2246-2259.	1.3	48
23	Improvement of vibrational comfort on agricultural vehicles by passive and semi-active cabin suspensions. Computers and Electronics in Agriculture, 2005, 49, 431-440.	3.7	47
24	Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Computers and Electronics in Agriculture, 2017, 137, 130-137.	3.7	43
25	Effect of controlled traffic on field efficiency. Biosystems Engineering, 2010, 106, 14-25.	1.9	42
26	Dynamic muscle fatigue detection using self-organizing maps. Applied Soft Computing Journal, 2005, 5, 391-398.	4.1	41
27	A deep learning approach for anthracnose infected trees classification in walnut orchards. Computers and Electronics in Agriculture, 2021, 182, 105998.	3.7	37
28	Detection of fuel type on a spark ignition engine from engine vibration behaviour. Applied Thermal Engineering, 2013, 54, 171-175.	3.0	31
29	Identification of purple spot disease on asparagus crops across spatial and spectral scales. Computers and Electronics in Agriculture, 2018, 148, 322-329.	3.7	31
30	Apple mealiness detection using fluorescence and self-organising maps. Computers and Electronics in Agriculture, 2003, 40, 103-114.	3.7	30
31	Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images. Sensors, 2017, 17, 2007.	2.1	30
32	An experimental study on the impact of the rear track width on the stability of agricultural tractors using a test bench. Journal of Terramechanics, 2011, 48, 319-323.	1.4	26
33	Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery. Sensors, 2017, 17, 2307.	2.1	26
34	Neural recognition system for swine cough. Mathematics and Computers in Simulation, 2001, 56, 475-487.	2.4	25
35	Incorporating Surface Elevation Information in UAV Multispectral Images for Mapping Weed Patches. Journal of Imaging, 2018, 4, 132.	1.7	25
36	Comfort improvement of a nonlinear suspension using global optimization and in situ measurements. Journal of Sound and Vibration, 2005, 284, 1003-1014.	2.1	24

DIMITRIOS MOSHOU

#	Article	IF	CITATIONS
37	A study on the effect of electronic engine speed regulator on agricultural tractor ride vibration behavior. Journal of Terramechanics, 2011, 48, 139-147.	1.4	24
38	Chlorophyll Fluorescence as a Tool for Online Quality Sorting of Apples. Biosystems Engineering, 2005, 91, 163-172.	1.9	22
39	A Weed Species Spectral Detector Based on Neural Networks. Precision Agriculture, 2002, 3, 209-223.	3.1	21
40	Detection of Fungal Diseases Optically and Pathogen Inoculum by Air Sampling. , 2010, , 135-149.		21
41	Non-Destructive Early Detection and Quantitative Severity Stage Classification of Tomato Chlorosis Virus (ToCV) Infection in Young Tomato Plants Using Vis–NIR Spectroscopy. Remote Sensing, 2020, 12, 1920.	1.8	20
42	An Intelligent Alarm for Early Detection of Swine Epidemics Based on Neural Networks. Transactions of the American Society of Agricultural Engineers, 2001, 44, 167-174.	0.9	17
43	Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors, 2018, 18, 2770.	2.1	14
44	Artificial intelligence in agriculture. , 2020, , 17-101.		13
45	Leaf Disease Recognition in Vine Plants Based on Local Binary Patterns and One Class Support Vector Machines. IFIP Advances in Information and Communication Technology, 2016, , 319-327.	0.5	11
46	Sensors in agriculture. , 2020, , 1-15.		11
47	Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1. Wind and Structures, an International Journal, 2012, 15, 481-494.	0.8	11
48	Evaluation of a Cascade Compensator for Horizontal Vibrations of a Flexible Spray Boom. Biosystems Engineering, 1998, 71, 81-92.	0.4	10
49	Hâ^ž-controller design for a vibrations isolating platform. Control Engineering Practice, 1999, 7, 1333-1341.	3.2	9
50	Designing AfriCultuReS services to support food security in Africa. Transactions in GIS, 2021, 25, 692-720.	1.0	9
51	2D and 3D soil moisture imaging using a sensor-based platform moving inside a subsurface network of pipes. Journal of Hydrology, 2013, 499, 146-153.	2.3	8
52	Towards the Development and Verification of a 3D-Based Advanced Optimized Farm Machinery Trajectory Algorithm. Sensors, 2021, 21, 2980.	2.1	7
53	Nutritional composition changes in bell pepper as affected by the ripening stage of fruits at harvest or postharvest storage and assessed nonâ€destructively. Journal of the Science of Food and Agriculture, 2022, 102, 445-454.	1.7	7

54 Utilization of multisensors and data fusion in precision agriculture. , 2020, , 103-173.

6

DIMITRIOS MOSHOU

#	Article	IF	CITATIONS
55	Rapid Nondestructive Postharvest Potato Freshness and Cultivar Discrimination Assessment. Applied Sciences (Switzerland), 2021, 11, 2630.	1.3	6
56	Local Linear Mapping Neural Networks for Pattern Recognition of Plants. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 61-66.	0.4	5
57	Fault Severity Estimation in Rotating Mechanical Systems Using Feature Based Fusion and Self-Organizing Maps. Lecture Notes in Computer Science, 2010, , 410-413.	1.0	5
58	WAVELET BASED ELECTROMYOGRAM (EMG) ANALYSIS. , 2000, , .		5
59	Spatiotemporal Prediction and Mapping of Heavy Metals at Regional Scale Using Regression Methods and Landsat 7. Remote Sensing, 2021, 13, 4615.	1.8	5
60	A generalized modelling technique for linearized motions of mechanisms with flexible parts. Journal of Sound and Vibration, 2003, 266, 553-572.	2.1	4
61	Prediction of spreading processes using a supervised Self-Organizing Map. Mathematics and Computers in Simulation, 2004, 65, 77-85.	2.4	4
62	Olive Trees Stress Detection Using Sentinel-2 Images. , 2019, , .		4
63	Vibration control using self-organizing look-up tables. Journal of Sound and Vibration, 2003, 266, 601-612.	2.1	3
64	Automatic Identification of Gasoline – Biofuel Blend Type in an Internal Combustion Four-stroke Engine based on Unsupervised Novelty Detection and Active Learning. Procedia Technology, 2013, 8, 229-237.	1.1	3
65	Spatial Enhancement of Modis Leaf Area Index Using Regression Analysis with Landsat Vegetation Index. , 2018, , .		3
66	Crop health condition monitoring based on the identification of biotic and abiotic stresses by using hierarchical self-organizing classifiers. , 2015, , 619-626.		3
67	Enhancing Food Security Through the Africultures Project: Design of Crop, Water and Drought Services. , 2019, , .		1
68	Tutorial IV: Leaf disease recognition. , 2020, , 241-258.		1
69	General overview of the proposed data mining and fusion techniques in agriculture. , 2020, , 287-313.		1
70	Mapping Soil Properties with Fixed Rank Kriging of Proximally Sensed Soil Data Fused with Sentinel-2 Biophysical Parameter. Remote Sensing, 2022, 14, 1639.	1.8	1
71	Self-Organizing Learning in Robotics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 83-87.	0.4	0
72	Prediction of Soil Nitrogen from Spectral Features Using Supervised Self Organising Maps. Communications in Computer and Information Science, 2015, , 119-126.	0.4	0

#	Article	IF	CITATIONS
73	Tutorial II: Disease detection with fusion techniques. , 2020, , 199-221.		0
74	Tutorial III: Disease and nutrient stress detection. , 2020, , 223-239.		0
75	Tutorial V: Yield prediction. , 2020, , 259-273.		0
76	Tutorial VI: Postharvest phenotyping. , 2020, , 275-285.		0
77	Tutorial I: Weed detection. , 2020, , 175-197.		0
78	SELF-ORGANIZING SENSORIMOTOR COORDINATION IN ROBOTICS. , 2000, , .		0