Jose MarÃ-a GonzÃ;lez Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086606/publications.pdf

Version: 2024-02-01

84 papers 2,574 citations

201674 27 h-index 206112 48 g-index

92 all docs 92 docs citations 92 times ranked 1211 citing authors

#	Article	IF	CITATIONS
1	Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 2014, 189, 140-158.	1.4	170
2	High-Cr and high-Al chromitites from the Sagua de $T ilde{A}_i$ namo district, Mayar $ ilde{A}$ -Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 2011, 125, 101-121.	1.4	160
3	Petrogenesis of the Platinum-Group Minerals. Reviews in Mineralogy and Geochemistry, 2016, 81, 489-578.	4.8	141
4	Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and its Tectonic Implications. Journal of Petrology, 2016, 57, 655-684.	2.8	137
5	Distribution of platinum-group elements and Os isotopes in chromite ores from MayarÃ-Baracoa Ophiolitic Belt (eastern Cuba). Contributions To Mineralogy and Petrology, 2005, 150, 589-607.	3.1	121
6	Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contributions To Mineralogy and Petrology, 2012, 164, 643-657.	3.1	109
7	Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, 2014, 189, 127-139.	1.4	98
8	Tibetan chromitites: Excavating the slab graveyard. Geology, 2015, 43, 179-182.	4.4	94
9	Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 2014, 389, 137-152.	3.3	90
10	Plume-subduction interaction forms large auriferous provinces. Nature Communications, 2017, 8, 843.	12.8	69
11	Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research, 2015, 27, 555-574.	6.0	64
12	The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology, 2015, 43, 119-122.	4.4	60
13	Zoning of laurite (RuS2)erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. European Journal of Mineralogy, 2009, 21, 419-432.	1.3	57
14	Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes. Contributions To Mineralogy and Petrology, 2013, 166, 1521-1538.	3.1	57
15	In situ Re–Os isotopic analysis of platinum-group minerals from the MayarÃ-Cristal ophiolitic massif (MayarÃ-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contributions To Mineralogy and Petrology, 2011, 161, 977-990.	3.1	51
16	Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust. Nature Communications, 2020, 11, 4342.	12.8	43
17	A shallow origin for diamonds in ophiolitic chromitites. Geology, 2019, 47, 75-78.	4.4	41

#	Article	lF	CITATIONS
19	Alteration patterns of chromian spinels from La Caba $\tilde{A}\pm a$ peridotite, south-central Chile. Mineralogy and Petrology, 2014, 108, 819-836.	1.1	35
20	Metamorphism disturbs the Re-Os signatures of platinum-group minerals in ophiolite chromitites. Geology, 2012, 40, 659-662.	4.4	34
21	The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence. Geology, 2013, 41, 547-550.	4.4	34
22	MINERALOGY AND GEOCHEMISTRY OF PLATINUM-RICH CHROMITITES FROM THE MANTLE-CRUST TRANSITION ZONE AT OUEN ISLAND, NEW CALEDONIA OPHIOLITE. Canadian Mineralogist, 2011, 49, 1549-1569.	1.0	32
23	Significance of ancient sulfide PGE and Re–Os signatures in the mantle beneath Calatrava, Central Spain. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	30
24	Fluid-present deformation aids chemical modification of chromite: Insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos, 2015, 228-229, 78-89.	1.4	30
25	Distribution of platinum-group minerals in ophiolitic chromitites. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2009, 118, 101-110.	0.8	29
26	Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: Insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif,) Tj ETQq0 0 0	rgB4 /Ove	rlo ze k 10 Tf 5
27	An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba). Minerals (Basel,) Tj ETQq1 10	0. 284 314	rg B J /Overlo
28	Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	28
29	Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1ÂGa ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	28
30	The recycling of chromitites in ophiolites from southwestern North America. Lithos, 2017, 294-295, 53-72.	1.4	28
31	Alteration of Platinum-Group and Base-Metal Mineral Assemblages in Ophiolite Chromitites from the Dobromirtsi Massif, Rhodope Mountains (Bulgaria). Resource Geology, 2010, 60, 315-334.	0.8	27
32	An overview of the platinum-group element nanoparticles in mantle-hosted chromite deposits. Ore Geology Reviews, 2017, 81, 1236-1248.	2.7	27
33	Highly siderophile elements mobility in the subcontinental lithospheric mantle beneath southern Patagonia. Lithos, 2018, 314-315, 579-596.	1.4	27
34	Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution. American Mineralogist, 2016, 101, 1360-1372.	1.9	26
35	Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (SerranÃa de Ronda, Spain). Ore Geology Reviews, 2017, 90, 193-209.	2.7	26
36	Magmatic platinum nanoparticles in metasomatic silicate glasses and sulfides from Patagonian mantle xenoliths. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	25

#	Article	IF	Citations
37	A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geology Reviews, 2016, 78, 14-40.	2.7	24
38	Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites. Geoscience Frontiers, 2018, 9, 1921-1936.	8.4	23
39	The role of silica in the hydrous metamorphism of chromite. Ore Geology Reviews, 2017, 90, 274-286.	2.7	20
40	Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 2020, 531, 115969.	4.4	19
41	Titanian clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction. European Journal of Mineralogy, 2017, 29, 959-970.	1.3	18
42	Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey. Journal of Asian Earth Sciences, 2016 , 119 , $1-19$.	2.3	17
43	Geodynamic implications of ophiolitic chromitites in the La Cabaña ultramafic bodies, Central Chile. International Geology Review, 2014, 56, 1466-1483.	2.1	16
44	Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks. Chemical Geology, 2018, 499, 84-99.	3.3	16
45	A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. International Geology Review, 2019, 61, 1706-1727.	2.1	15
46	Mineralogy of the HSE in the subcontinental lithospheric mantle —An interpretive review. Lithos, 2020, 372-373, 105681.	1.4	15
47	Nanoscale partitioning of Ru, Ir, and Pt in base-metal sulfides from the Caridad chromite deposit, Cuba. American Mineralogist, 2018, 103, 1208-1220.	1.9	14
48	Dating metasomatic events in the lithospheric mantle beneath the Calatrava volcanic field (central) Tj ETQq0 0 () rgBŢ /Ov	erlogk 10 Tf 5
49	Mechanisms for Pd Au enrichment in porphyry-epithermal ores of the Elatsite deposit, Bulgaria. Journal of Geochemical Exploration, 2021, 220, 106664.	3.2	14
50	Petrogenesis of the Platinum-Group Minerals. , 2016, , 489-578.		13
51	Unraveling the Effects of Melt–Mantle Interactions on the Gold Fertility of Magmas. Frontiers in Earth Science, 2020, 8, .	1.8	12
52	Precious metals in magmatic Fe-Ni-Cu sulfides from the PotosÃ-chromitite deposit, eastern Cuba. Ore Geology Reviews, 2020, 118, 103339.	2.7	12
53	Ophiolite hosted chromitite formed by supra-subduction zone peridotite –plume interaction. Geoscience Frontiers, 2020, 11, 2083-2102.	8.4	11
54	Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes―by Ballhaus et al., 2017: Ultra-high pressure and super-reduced minerals in ophiolites do not form by lightning strikes. Geochemical Perspectives Letters, 0, , 1-2.	5.0	11

#	Article	IF	CITATIONS
55	Tectono-metamorphic evolution of subduction channel serpentinites from South-Central Chile. Lithos, 2019, 336-337, 221-241.	1.4	10
56	Las cromititas del Complejo OfiolÃŧico de Camagüey, Cuba: un ejemplo de cromitas ricas en Al. Boletin De La Sociedad Geologica Mexicana, 2010, 62, 173-185.	0.3	10
57	Nanoscale Structure of Zoned Laurites from the Ojén Ultramafic Massif, Southern Spain. Minerals (Basel, Switzerland), 2019, 9, 288.	2.0	9
58	Re–Os isotopic constraints on the source of platinum-group minerals (PGMs) from the Vestřev pyrope-rich garnet placer deposit, Bohemian Massif. Ore Geology Reviews, 2015, 68, 117-126.	2.7	8
59	Ophiolitic Chromitites of Timor Leste: Their Composition, Platinum Group Element Geochemistry, Mineralogy, and Evolution. Canadian Mineralogist, 2017, 55, 875-908.	1.0	8
60	Timing the tectonic mingling of ultramafic rocks and metasediments in the southern section of the coastal accretionary complex of central Chile. International Geology Review, 2018, 60, 2031-2045.	2.1	8
61	Sedimentary provenance of the Late Paleozoic metamorphic basement, south-central Chile: Implications for the evolution of the western margin of Gondwana. International Geology Review, 2020, 62, 598-613.	2.1	8
62	The chromitites of the Neoproterozoic Bou Azzer ophiolite (central Anti-Atlas, Morocco) revisited. Ore Geology Reviews, 2021, 134, 104166.	2.7	8
63	Nanoscale constraints on the in situ transformation of Ru–Os–Ir sulfides to alloys at low temperature. Ore Geology Reviews, 2020, 124, 103640.	2.7	7
64	Metallogenic fingerprint of a metasomatized lithospheric mantle feeding gold endowment in the western Mediterranean basin. Bulletin of the Geological Society of America, 2022, 134, 1468-1484.	3.3	7
65	Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic. Mineralium Deposita, 0 , , 1 .	4.1	7
66	Metamorphic evolution of sulphide-rich chromitites from the Chernichevo ultramafic massif, SE Bulgaria. Ore Geology Reviews, 2018, 101, 330-348.	2.7	6
67	A shallow origin for diamonds in ophiolitic chromitites: REPLY. Geology, 2019, 47, e477-e478.	4.4	6
68	Re-Os Isotope Systematics of Sulfides in Chromitites and Host Lherzolites of the Andaman Ophiolite, India. Minerals (Basel, Switzerland), 2020, 10, 686.	2.0	6
69	Polymetallic nanoparticles in pyrite from massive and stockwork ores of VMS deposits of the Iberian Pyrite Belt. Ore Geology Reviews, 2022, 145, 104875.	2.7	6
70	Deposits associated with ultramafic–mafic complexes in Mexico: the Loma Baya case. Ore Geology Reviews, 2017, 81, 1053-1065.	2.7	5
71	Fe-Ti-Zr metasomatism in the oceanic mantle due to extreme differentiation of tholeiltic melts (Moa-Baracoa ophiolite, Cuba). Lithos, 2020, 358-359, 105420.	1.4	5
72	Metamorphic fingerprints of Fe-rich chromitites from the Eastern Pampean Ranges, Argentina. Boletin De La Sociedad Geologica Mexicana, 2020, 72, A080420.	0.3	5

#	Article	IF	CITATIONS
73	Genesis and evolution of the San Manuel iron skarn deposit (Betic Cordillera, SW Spain). Ore Geology Reviews, 2022, 141, 104657.	2.7	5
74	Petrogenesis of the chromitite body from the Cerro Colorado ophiolite, ParaguanÃ; Peninsula, Venezuela. Boletin De La Sociedad Geologica Mexicana, 2020, 72, .	0.3	4
75	Trace element fingerprints of Ni–Fe–S–As minerals in subduction channel serpentinites. Lithos, 2021, 400-401, 106432.	1.4	3
76	Open System Re-Os Isotope Behavior in Platinum-Group Minerals during Laterization?. Minerals (Basel,) Tj ETQq0	0 OrgBT /0 2.0	Ogerlock 10
77	Corrigendum to "Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective―[Earth Planet. Sci. Lett. 531 (2020) 115969]. Earth and Planetary Science Letters, 2020, 535, 116136.	4.4	2
78	Petrology and geochemistry of high-Al chromitites from the MedellÃn Metaharzburgitic Unit (MMU), Colombia. Boletin De La Sociedad Geologica Mexicana, 2020, 72, A120620.	0.3	2
79	Orthopyroxenite hosted chromitite veins anomalously enriched in platinum-group minerals from the Havana-Matanzas Ophiolite, Cuba. Boletin De La Sociedad Geologica Mexicana, 2020, 72, A110620.	0.3	2
80	A record of metasomatism and crustal contamination of the Mediterranean lithosphere in chromitites of the Orhaneli Ophiolite Complex (NW Týrkiye). Journal of Asian Earth Sciences, 2022, 236, 105311.	2.3	2
81	Genesis of an exotic platinum-group-mineral-rich and Mg-poor chromitite in the Kevitsa Ni-Cu-platinum-group-elements deposit. Mineralogy and Petrology, 2021, 115, 535-555.	1.1	1
82	Nano- and Micrometer-Sized PGM in Ni-Cu-Fe Sulfides from an Olivine Megacryst in the Udachnaya Pipe, Yakutia, Russia. Canadian Mineralogist, 2021, 59, 1755-1773.	1.0	1
83	Comments on the paper "Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern) Tj ETQq1 2022, 148, 105019.	1 0.78431 2.7	4 rgBT /Ove 1
84	Metallogenic and tectonomagmatic evolution of Mexico during the Mesozoic: Preface. Ore Geology Reviews, 2017, 81, 1033-1034.	2.7	0