Achim Schmidtko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086597/publications.pdf

Version: 2024-02-01

201575 206029 2,480 67 27 48 citations h-index g-index papers 69 69 69 3151 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ziconotide for treatment of severe chronic pain. Lancet, The, 2010, 375, 1569-1577.	6.3	306
2	No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends in Neurosciences, 2009, 32, 339-346.	4.2	171
3	Celecoxib loses its antiâ€inflammatory efficacy at high doses through activation of NFâ€iºB. FASEB Journal, 2001, 15, 1622-1624.	0.2	149
4	Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3253-3257.	3.3	105
5	5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals. Journal of Neuroscience, 2012, 32, 6364-6372.	1.7	103
6	cGMP Produced by NO-Sensitive Guanylyl Cyclase Essentially Contributes to Inflammatory and Neuropathic Pain by Using Targets Different from cGMP-Dependent Protein Kinase I. Journal of Neuroscience, 2008, 28, 8568-8576.	1.7	94
7	NADPH Oxidase-4 Maintains Neuropathic Pain after Peripheral Nerve Injury. Journal of Neuroscience, 2012, 32, 10136-10145.	1.7	94
8	cGMP: a unique 2nd messenger molecule – recent developments in cGMP research and development. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 287-302.	1.4	82
9	Tissue distribution of imipenem in critically ill patients. Clinical Pharmacology and Therapeutics, 2002, 71, 325-333.	2.3	81
10	NOXious signaling in pain processing. , 2013, 137, 309-317.		76
11	Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neuroscience Letters, 2002, 332, 146-150.	1.0	69
12	Slack Channels Expressed in Sensory Neurons Control Neuropathic Pain in Mice. Journal of Neuroscience, 2015, 35, 1125-1135.	1.7	67
13	Additive Antinociceptive Effects of a Combination of Vitamin C and Vitamin E after Peripheral Nerve Injury. PLoS ONE, 2011, 6, e29240.	1.1	59
14	Antioxidant Activity of Sestrin 2 Controls Neuropathic Pain After Peripheral Nerve Injury. Antioxidants and Redox Signaling, 2013, 19, 2013-2023.	2.5	58
15	Cysteine-Rich Protein 2, a Novel Downstream Effector of cGMP/cGMP-Dependent Protein Kinase I-Mediated Persistent Inflammatory Pain. Journal of Neuroscience, 2008, 28, 1320-1330.	1.7	55
16	Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain, 2014, 155, 2161-2170.	2.0	55
17	Modulation of spinal nociceptive processing through the glutamate transporter GLT-1. Neuroscience, 2003, 116, 81-87.	1.1	54
18	Impaired acute and inflammatory nociception in mice lacking the p50 subunit of NF-κB. European Journal of Pharmacology, 2007, 559, 55-60.	1.7	46

#	Article	IF	CITATIONS
19	The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain, 2004, 110, 409-418.	2.0	45
20	Inhibition of cyclic guanosine 5′-monophosphate-dependent protein kinase I (PKG-I) in lumbar spinal cord reduces formalin-induced hyperalgesia and PKG upregulation. Nitric Oxide - Biology and Chemistry, 2003, 8, 89-94.	1.2	39
21	BKCa channels expressed in sensory neurons modulate inflammatory pain in mice. Pain, 2014, 155, 556-565.	2.0	39
22	Analgesic efficacy of tramadol, pregabalin and ibuprofen in menthol-evoked cold hyperalgesia. Pain, 2009, 147, 116-121.	2.0	38
23	CNGA3: A Target of Spinal Nitric Oxide/cGMP Signaling and Modulator of Inflammatory Pain Hypersensitivity. Journal of Neuroscience, 2011, 31, 11184-11192.	1.7	38
24	Protein associated with Myc (PAM) is involved in spinal nociceptive processing. Journal of Neurochemistry, 2004, 88, 948-957.	2.1	37
25	Genetic deletion of synapsin II reduces neuropathic pain due to reduced glutamate but increased GABA in the spinal cord dorsal horn. Pain, 2008, 139, 632-643.	2.0	35
26	The Protein Kinase IKKÎ μ Is a Potential Target for the Treatment of Inflammatory Hyperalgesia. Journal of Immunology, 2011, 187, 2617-2625.	0.4	34
27	Boosting Anti-Inflammatory Potency of Zafirlukast by Designed Polypharmacology. Journal of Medicinal Chemistry, 2018, 61, 5758-5764.	2.9	31
28	Toponomics Analysis of Functional Interactions of the Ubiquitin Ligase PAM (Protein Associated with) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
29	The glutamate transporter GLAST is involved in spinal nociceptive processing. Biochemical and Biophysical Research Communications, 2006, 346, 393-399.	1.0	27
30	Direct Intrathecal Drug Delivery in Mice for Detecting In Vivo Effects of cGMP on Pain Processing. Methods in Molecular Biology, 2013, 1020, 215-221.	0.4	27
31	Nitric Oxide-Mediated Pain Processing in the Spinal Cord. Handbook of Experimental Pharmacology, 2015, 227, 103-117.	0.9	27
32	The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord. Frontiers in Molecular Neuroscience, 2018, 11, 19.	1.4	27
33	KCa3.1 channels modulate the processing of noxious chemical stimuli in mice. Neuropharmacology, 2017, 125, 386-395.	2.0	24
34	Essential role of the synaptic vesicle protein synapsin II in formalin-induced hyperalgesia and glutamate release in the spinal cord. Pain, 2005, 115, 171-181.	2.0	20
35	Oxidant-Induced Activation of cGMP-Dependent Protein Kinase $\hat{\text{Il}}$ ± Mediates Neuropathic Pain After Peripheral Nerve Injury. Antioxidants and Redox Signaling, 2014, 21, 1504-1515.	2.5	18
36	Narciclasine exerts antiâ€inflammatory actions by blocking leukocyte–endothelial cell interactions and downâ€regulation of the endothelial TNF receptor 1. FASEB Journal, 2019, 33, 8771-8781.	0.2	17

#	Article	IF	Citations
37	The H 2 S-producing enzyme CSE is dispensable for the processing of inflammatory and neuropathic pain. Brain Research, 2015, 1624, 380-389.	1.1	14
38	Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacology Biochemistry and Behavior, 2014, 124, 389-395.	1.3	13
39	Phosphodiesterase 2A Localized in the Spinal Cord Contributes to Inflammatory Pain Processing. Anesthesiology, 2014, 121, 372-382.	1.3	13
40	Design, Synthesis, and Structure–Activity Relationship Studies of Dual Inhibitors of Soluble Epoxide Hydrolase and 5-Lipoxygenase. Journal of Medicinal Chemistry, 2020, 63, 11498-11521.	2.9	13
41	The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception. Biochemical and Biophysical Research Communications, 2007, 362, 75-80.	1.0	11
42	Prostaglandin D2 sustains the pyrogenic effect of prostaglandin E2. European Journal of Pharmacology, 2009, 608, 28-31.	1.7	10
43	Human adenovirus type 17 from species D transduces endothelial cells and human CD46 is involved in cell entry. Scientific Reports, 2018, 8, 13442.	1.6	10
44	Rab27a Contributes to the Processing of Inflammatory Pain in Mice. Cells, 2020, 9, 1488.	1.8	10
45	cGMP Imaging in Brain Slices Reveals Brain Region-Specific Activity of NO-Sensitive Guanylyl Cyclases (NO-GCs) and NO-GC Stimulators. International Journal of Molecular Sciences, 2018, 19, 2313.	1.8	9
46	Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radical Biology and Medicine, 2021, 168, 155-167.	1.3	9
47	Rab7—a novel redox target that modulates inflammatory pain processing. Pain, 2017, 158, 1354-1365.	2.0	8
48	Loxapine for Treatment of Patients With Refractory, Chemotherapy-Induced Neuropathic Pain: A Prematurely Terminated Pilot Study Showing Efficacy But Limited Tolerability. Frontiers in Pharmacology, 2019, 10, 838.	1.6	8
49	Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing. International Journal of Molecular Sciences, 2021, 22, 405.	1.8	8
50	Pharmacological and histopathological characterization of a hyperalgesia model induced by freeze lesion. Pain, 2007, 127, 287-295.	2.0	7
51	Cleavage of SNAPâ€25 ameliorates cancer pain in a mouse model of melanoma. European Journal of Pain, 2017, 21, 101-111.	1.4	7
52	Distinct functions of soluble guanylyl cyclase isoforms NO-GC1 and NO-GC2 in inflammatory and neuropathic pain processing. Pain, 2019, 160, 607-618.	2.0	7
53	Prolonged zymosan-induced inflammatory pain hypersensitivity in mice lacking glycine receptor alpha2. Behavioural Brain Research, 2012, 226, 106-111.	1.2	6
54	Neuropathic and cAMP-induced pain behavior is ameliorated in mice lacking CNGB1. Neuropharmacology, 2020, 171, 108087.	2.0	6

#	Article	IF	CITATIONS
55	Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice. Purinergic Signalling, 2021, 17, 503-514.	1.1	5
56	NADPH Oxidases in Pain Processing. Antioxidants, 2022, 11, 1162.	2.2	5
57	cGMP signalling in dorsal root ganglia and the spinal cord: Various functions in development and adulthood. British Journal of Pharmacology, 2022, 179, 2361-2377.	2.7	4
58	Slick Potassium Channels Control Pain and Itch in Distinct Populations of Sensory and Spinal Neurons in Mice. Anesthesiology, 2022, 136, 802-822.	1.3	3
59	Slack Potassium Channels Modulate TRPA1-Mediated Nociception in Sensory Neurons. Cells, 2022, 11, 1693.	1.8	3
60	A Novel Signaling Pathway That Modulates Inflammatory Pain. Journal of Neuroscience, 2011, 31, 798-800.	1.7	2
61	Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. Journal of Cell Biology, 2021, 220, .	2.3	2
62	The role of cGMP and PKG-I in spinal nociceptive processing. BMC Pharmacology, 2005, 5, P50.	0.4	0
63	Cysteine-rich protein 2 is a downstream effector of cGMP-dependent protein kinase I in nociception. BMC Pharmacology, 2007, 7, .	0.4	0
64	cGMP-dependent signaling pathways in spinal pain processing. BMC Pharmacology, 2009, 9, .	0.4	0
65	Functions of NO-GC1 and NO-GC2 in pain processing. BMC Pharmacology & Early; Toxicology, 2015, 16, .	1.0	O
66	Redox regulation of soluble epoxide hydrolase does not affect pain behavior in mice. Neuroscience Letters, 2020, 721, 134798.	1.0	0
67	Modulation of spinal nociceptive processing through the glutamate transporter GLT-1., 0, 2002, .		O