Florencia Rosetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086571/publications.pdf

Version: 2024-02-01

25 papers 1,692 citations

471509 17 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

2470 citing authors

#	Article	IF	CITATIONS
1	Regulation of activated T cell survival in rheumatic autoimmune diseases. Nature Reviews Rheumatology, 2022, 18, 232-244.	8.0	21
2	Sirtuin 7 Deficiency Reduces Inflammation and Tubular Damage Induced by an Episode of Acute Kidney Injury. International Journal of Molecular Sciences, 2022, 23, 2573.	4.1	12
3	Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. Journal of Experimental Medicine, 2022, 219, .	8.5	25
4	Unwinding the Long Road that leads to Understanding Autoimmunity. Revista De Investigacion Clinica, 2021, 73, 297-301.	0.4	0
5	The helminth-derived peptide GK-1 induces an anti-tumoral CD8 T cell response associated with downregulation of the PD-1/PD-L1 pathway. Clinical Immunology, 2020, 212, 108240.	3.2	5
6	TCR-α∫β CD4â^' CD8â^' double negative T cells arise from CD8+ T cells. Journal of Leukocyte Biology, 2020, 108, 851-857.	3.3	18
7	Protein phosphatase 2A B55 \hat{l}^2 limits CD8+ T cell lifespan following cytokine withdrawal. Journal of Clinical Investigation, 2020, 130, 5989-6004.	8.2	5
8	Differential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification. Scientific Reports, 2019, 9, 15502.	3.3	24
9	Gene-function studies in systemic lupus erythematosus. Current Opinion in Rheumatology, 2019, 31, 185-192.	4.3	14
10	PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight, 2019, 4, .	5.0	14
11	Mechanisms of Tissue Injury in Lupus Nephritis. Trends in Molecular Medicine, 2018, 24, 364-378.	6.7	86
12	Cis interaction between sialylated Fc \hat{i}^3 RIIA and the $\hat{i}\pm i$ -domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nature Communications, 2018, 9, 5058.	12.8	43
13	Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight, 2017, 2, .	5.0	81
14	Neutrophil FcÎ ³ RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. Journal of Clinical Investigation, 2017, 127, 3810-3826.	8.2	48
15	The many faces of Macâ€1 in autoimmune disease. Immunological Reviews, 2016, 269, 175-193.	6.0	95
16	ICER is requisite for Th17 differentiation. Nature Communications, 2016, 7, 12993.	12.8	64
17	The mechanisms of up-regulation of dendritic cell activity by oxidative stress. Journal of Leukocyte Biology, 2014, 96, 283-293.	3.3	26
18	Endothelial TNF Receptor 2 Induces IRF1 Transcription Factor-Dependent Interferon-β Autocrine Signaling to Promote Monocyte Recruitment. Immunity, 2013, 38, 1025-1037.	14.3	118

#	Article	IF	CITATIONS
19	Human Lupus Serum Induces Neutrophil-Mediated Organ Damage in Mice That Is Enabled by Mac-1 Deficiency. Journal of Immunology, 2012, 189, 3714-3723.	0.8	57
20	Circulating TNF Receptors 1 and 2 Predict ESRD in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2012, 23, 507-515.	6.1	388
21	Cutting Edge: Protein Phosphatase 2A Confers Susceptibility to Autoimmune Disease through an IL-17–Dependent Mechanism. Journal of Immunology, 2012, 188, 3567-3571.	0.8	51
22	Circulating TNF Receptors 1 and 2 Predict Stage 3 CKD in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2012, 23, 516-524.	6.1	307
23	Neutrophils: game changers in glomerulonephritis?. Trends in Molecular Medicine, 2010, 16, 368-378.	6.7	46
24	T cell apoptosis at the maternal–fetal interface in early human pregnancy, involvement of galectin-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18472-18477.	7.1	100
25	HLA-DR association with the genetic susceptibility to develop ashy dermatosis in Mexican Mestizo patients. Journal of the American Academy of Dermatology, 2007, 56, 617-620.	1.2	31