
Hiroaki Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncogenic Mutation BRAF V600E Changes Phenotypic Behavior of THLE-2 Liver Cells through Alteration of Gene Expression. International Journal of Molecular Sciences, 2022, 23, 1548.	1.8	1
2	HNF1A POU Domain Mutations Found in Japanese Liver Cancer Patients Cause Downregulation of HNF4A Promoter Activity with Possible Disruption in Transcription Networks. Genes, 2022, 13, 413.	1.0	3
3	NRF2 DLG Domain Mutations Identified in Japanese Liver Cancer Patients Affect the Transcriptional Activity in HCC Cell Lines. International Journal of Molecular Sciences, 2021, 22, 5296.	1.8	1
4	Molecular Characterisation of Uterine Endometrial Proteins during Early Stages of Pregnancy in Pigs by MALDI TOF/TOF. International Journal of Molecular Sciences, 2021, 22, 6720.	1.8	7
5	Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers, 2021, 13, 5357.	1.7	4
6	Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. International Journal of Molecular Sciences, 2020, 21, 7192.	1.8	5
7	Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes, 2020, 11, 1342.	1.0	58
8	Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis. International Journal of Molecular Sciences, 2020, 21, 5378.	1.8	22
9	Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells, 2020, 9, 2603.	1.8	12
10	Construction of 3D Cellular Composites with Stem Cells Derived from Adipose Tissue and Endothelial Cells by Use of Optical Tweezers in a Natural Polymer Solution. Materials, 2019, 12, 1759.	1.3	6
11	Neurogenesis Using P19 Embryonal Carcinoma Cells. Journal of Visualized Experiments, 2019, , .	0.2	4
12	Possible Mechanisms for Maintenance and Regression of Corpus Luteum Through the Ubiquitin-Proteasome and Autophagy System Regulated by Transcriptional Factors. Frontiers in Endocrinology, 2019, 10, 748.	1.5	13
13	Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters, 2018, 424, 46-69.	3.2	81
14	Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model. Journal of Orthopaedic Science, 2018, 23, 688-696.	0.5	13
15	Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum. European Journal of Medicinal Chemistry, 2018, 153, 29-33.	2.6	59
16	Manipulating Living Cells to Construct Stable 3D Cellular Assembly Without Artificial Scaffold. Journal of Visualized Experiments, 2018, , .	0.2	3
17	Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Frontiers in Plant Science, 2018, 9, 617.	1.7	149
18	Influence of Single-Nucleotide Polymorphisms in PPAR-δ, PPAR-γ, and PRKAA2 on the Changes in Anthropometric Indices and Blood Measurements through Exercise-Centered Lifestyle Intervention in Japanese Middle-Aged Men. International Journal of Molecular Sciences, 2018, 19, 703.	1.8	7

Hiroaki Taniguchi

#	Article	IF	CITATIONS
19	Loss-of-function mutations in Zn-finger DNA-binding domain of <i>HNF4A</i> cause aberrant transcriptional regulation in liver cancer. Oncotarget, 2018, 9, 26144-26156.	0.8	17
20	Possible roles of the transcription factor Nrf1 (NFE2L1) in neural homeostasis by regulating the gene expression of deubiquitinating enzymes. Biochemical and Biophysical Research Communications, 2017, 484, 176-183.	1.0	14
21	A Protein Preparation Method for the High-throughput Identification of Proteins Interacting with a Nuclear Cofactor Using LC-MS/MS Analysis. Journal of Visualized Experiments, 2017, , .	0.2	0
22	Manipulating Living Cells to Construct a 3D Single-Cell Assembly without an Artificial Scaffold. Polymers, 2017, 9, 319.	2.0	15
23	Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nature Genetics, 2016, 48, 500-509.	9.4	596
24	USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression. Biochemical and Biophysical Research Communications, 2016, 478, 363-370.	1.0	20
25	Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes. Scientific Reports, 2016, 6, 26483.	1.6	20
26	Imaging of Cell Shape Alteration and Cell Movement in Drosophila Gastrulation Using DE-cadherin Reporter Transgenic Flies. Journal of Visualized Experiments, 2016, , .	0.2	0
27	An Efficient Method to Obtain Dedifferentiated Fat Cells. Journal of Visualized Experiments, 2016, , .	0.2	3
28	Formation of stable cell–cell contact without a solid/gel scaffold: Non-invasive manipulation by laser under depletion interaction with a polymer. Chemical Physics Letters, 2016, 655-656, 11-16.	1.2	7
29	Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation. Scientific Reports, 2015, 5, 14498.	1.6	8
30	Constitutive activation of Drosophila CncC transcription factor reduces lipid formation in the fat body. Biochemical and Biophysical Research Communications, 2015, 463, 693-698.	1.0	27
31	Inhibitory Mechanism of FAT4 Gene Expression in Response to Actin Dynamics during Src-Induced Carcinogenesis. PLoS ONE, 2015, 10, e0118336.	1.1	46
32	Chromatin regulators in neurodevelopment and disease: Analysis of fly neural circuits provides insights. BioEssays, 2014, 36, 872-883.	1.2	11
33	Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna. Journal of Visualized Experiments, 2014, , .	0.2	5
34	The Casein Kinase 2-Nrf1 Axis Controls the Clearance of Ubiquitinated Proteins by Regulating Proteasome Gene Expression. Molecular and Cellular Biology, 2013, 33, 3461-3472.	1.1	50
35	Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nature Neuroscience, 2012, 15, 224-233.	7.1	75
36	Epidermal Growth Factor Receptor Is an Obligatory Intermediate for Oxytocin-Induced Cyclooxygenase 2 Expression and Prostaglandin F2α Production in Bovine Endometrial Epithelial Cells. Endocrinology, 2010, 151, 1367-1374.	1.4	13

Hiroaki Taniguchi

#	Article	IF	CITATIONS
37	The effect of human GATA4 gene mutations on the activity of target gonadal promoters. Journal of Molecular Endocrinology, 2009, 42, 149-160.	1.1	19
38	The expression of the nuclear receptors NR5A1 and NR5A2 and transcription factor GATA6 correlates with steroidogenic gene expression in the bovine corpus luteum. Molecular Reproduction and Development, 2009, 76, 873-880.	1.0	26
39	A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Molecular Biology, 2008, 9, 44.	3.0	139
40	LRH-1/NR5A2 cooperates with GATA factors to regulate inhibin α-subunit promoter activity. Molecular and Cellular Endocrinology, 2006, 257-258, 65-74.	1.6	29
41	Protein Kinase A-Dependent Synergism between GATA Factors and the Nuclear Receptor, Liver Receptor Homolog-1, Regulates Human Aromatase (CYP19) PII Promoter Activity in Breast Cancer Cells. Endocrinology, 2005, 146, 4905-4916.	1.4	57
42	GATA Factors and the Nuclear Receptors, Steroidogenic Factor 1/Liver Receptor Homolog 1, Are Key Mutual Partners in the Regulation of the Human 3l²-Hydroxysteroid Dehydrogenase Type 2 Promoter. Molecular Endocrinology, 2005, 19, 2358-2370.	3.7	82
43	The 25th Volume: Role of the GATA Family of Transcription Factors in Andrology. Journal of Andrology, 2004, 25, 441-452.	2.0	46
44	Fas-Fas Ligand System Mediates Luteal Cell Death in Bovine Corpus Luteum1. Biology of Reproduction, 2002, 66, 754-759.	1.2	107
45	The lipoxygenase pathways are involved in LH-stimulated progesterone production in bovine corpus luteum. Prostaglandins and Other Lipid Mediators, 2002, 67, 49-60.	1.0	12
46	Hepatocyte Growth Factor is a Regulator in the Proliferation of Microvascular Endothelial Cells in Bovine Corpus Luteum Journal of Reproduction and Development, 2002, 48, 49-55.	0.5	0
47	Estradiol-17β Is Produced in Bovine Corpus Luteum1. Biology of Reproduction, 2001, 65, 1634-1639.	1.2	43