Jan A Oleszkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10865134/publications.pdf

Version: 2024-02-01

52 papers

1,913 citations

236833 25 h-index 254106 43 g-index

52 all docs 52 docs citations

times ranked

52

1889 citing authors

#	Article	IF	CITATIONS
1	Performance and recovery of nitrifying biofilm after exposure to prolonged starvation. Chemosphere, 2022, 290, 133323.	4.2	6
2	Modeling of the attached and suspended biomass fractions in a moving bed biofilm reactor. Chemosphere, 2021, 275, 129937.	4.2	6
3	Kinetics of aerobic granular sludge treating low-strength synthetic wastewater at high dissolved oxygen. Environmental Technology (United Kingdom), 2020, 41, 1455-1463.	1.2	3
4	Ammonia, thiocyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater. Chemosphere, 2020, 243, 125395.	4.2	23
5	Controlling biofilm retention time in an A-stage high-rate moving bed biofilm reactor for organic carbon redirection. Science of the Total Environment, 2020, 745, 141051.	3.9	2
6	Aerobic granular sludge treating anaerobically pretreated brewery wastewater at different loading rates. Water Science and Technology, 2020, 82, 1523-1534.	1.2	4
7	Physicochemical methods for biofilm removal allow for control of biofilm retention time in a high rate MBBR. Environmental Technology (United Kingdom), 2020, , 1-10.	1.2	7
8	Effective nitrogen removal in a two-stage partial nitritation-anammox reactor treating municipal wastewater – Piloting PN-MBBR/AMX-IFAS configuration. Bioresource Technology, 2019, 289, 121742.	4.8	42
9	Moving bed biofilm reactor technology in municipal wastewater treatment: A review. Journal of Environmental Management, 2019, 247, 849-866.	3.8	159
10	Controlling cold temperature partial nitritation in moving bed biofilm reactor. Chemosphere, 2019, 227, 216-224.	4.2	20
11	Accelerated start-up of a partial nitritation-anammox moving bed biofilm reactor. Biochemical Engineering Journal, 2019, 145, 83-89.	1.8	21
12	Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes. Journal of Hazardous Materials, 2019, 368, 862-868.	6.5	78
13	Attachment of anaerobic ammonium-oxidizing bacteria to augmented carrier material. Environmental Technology (United Kingdom), 2019, 40, 576-583.	1.2	27
14	Start-up and long-term performance of anammox moving bed biofilm reactor seeded with granular biomass. Chemosphere, 2018, 200, 481-486.	4.2	48
15	Cultivation of aerobic granular sludge in continuous flow under various selective pressure. Bioresource Technology, 2018, 253, 281-287.	4.8	28
16	Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency. Environmental Technology (United Kingdom), 2018, 39, 2390-2410.	1.2	2
17	Impact of electrocoagulation of soluble microbial products on membrane fouling at different volatile suspended solids' concentrations. Environmental Technology (United Kingdom), 2017, 38, 385-393.	1.2	17
18	Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresource Technology, 2017, 226, 150-157.	4.8	78

#	Article	IF	Citations
19	Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge. Water Science and Technology, 2016, 73, 60-68.	1.2	18
20	Increase of Soluble Phosphorus and Volatile Fatty Acids During Co-fermentation of Wastewater Sludge. Waste and Biomass Valorization, 2016, 7, 317-324.	1.8	9
21	Modeling bioaugmentation with nitrifiers in membrane bioreactors. Water Science and Technology, 2015, 71, 15-21.	1.2	8
22	Electro-conditioning of activated sludge in a membrane electro-bioreactor for improved dewatering and reduced membrane fouling. Journal of Membrane Science, 2015, 494, 136-142.	4.1	59
23	Applicability of the Arrhenius model for ammonia oxidizing bacteria subjected to temperature time gradients. Frontiers of Environmental Science and Engineering, 2015, 9, 988-994.	3.3	8
24	Long-term Impact of Low Temperature on Anammox Process. Proceedings of the Water Environment Federation, 2015, 2015, 3039-3050.	0.0	0
25	Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater. Chemosphere, 2014, 97, 71-77.	4.2	96
26	Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 2014, 109, 20-27.	4.2	38
27	Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere, 2014, 101, 28-33.	4.2	94
28	Novel electrokinetic approach reduces membrane fouling. Water Research, 2013, 47, 6358-6366.	5.3	53
29	Applicability of industrial wastewater as carbon source for denitrification of a sludge dewatering liquor. Environmental Technology (United Kingdom), 2013, 34, 731-736.	1.2	8
30	Effects of Turbulence and Temperature on Leachate Chemistry. Journal of Environmental Engineering, ASCE, 2012, 138, 562-569.	0.7	2
31	Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresource Technology, 2012, 120, 199-205.	4.8	81
32	Effect of ammonia oxidizing bacteria (AOB) kinetics on bioaugmentation. Bioresource Technology, 2012, 125, 88-96.	4.8	19
33	Modeling the decay of ammonium oxidizing bacteria. Water Research, 2011, 45, 557-564.	5.3	31
34	Denitritation of a high-strength nitrite wastewater in a sequencing batch reactor using different organic carbon sources. Chemical Engineering Journal, 2011, 172, 994-998.	6.6	39
35	Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 2011, 83, 720-725.	4.2	59
36	Bioaugmentation with Ammonia Oxidizing Bacteria (AOB) Selected in an Alternating Bioreactor. Proceedings of the Water Environment Federation, 2011, 2011, 758-766.	0.0	0

#	Article	IF	Citations
37	Leachate treatment before injection into a bioreactor landfill: Clogging potential reduction and benefits of using methanogenesis. Waste Management, 2010, 30, 2030-2036.	3.7	29
38	Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Research, 2008, 42, 2320-2328.	5. 3	137
39	Performance change during long-term ozonation aimed at augmenting denitrification and decreasing waste activated sludge. Chemosphere, 2008, 73, 1529-1532.	4.2	18
40	Effect of Coldâ€Temperature Shock on Nitrification. Water Environment Research, 2007, 79, 964-968.	1.3	70
41	Ozonation reduces sludge production and improves denitrification. Water Research, 2007, 41, 543-550.	5.3	113
42	Nutrient Removal Technology in North America and the European Union: A Review. Water Quality Research Journal of Canada, 2006, 41, 449-462.	1.2	77
43	High-Solids Anaerobic Digestion of Mixed Municipal and Industrial Waste. Journal of Environmental Engineering, ASCE, 1997, 123, 1087-1092.	0.7	42
44	Response of acclimated and unâ€acclimated activated sludge to 2â€nitrophenol. Environmental Technology (United Kingdom), 1993, 14, 351-358.	1.2	9
45	Effects of chlorinaiton on nitrification. Environmental Technology (United Kingdom), 1992, 13, 1077-1084.	1.2	1
46	Anaerobic coâ€composting of municipal solid waste and waste sludge at hIgh total solids levels. Environmental Technology (United Kingdom), 1992, 13, 409-421.	1.2	67
47	Inhibition of growth and acetate uptake by ammonia in batch anaerobic digestion. Journal of Chemical Technology and Biotechnology, 1991, 52, 135-143.	1.6	36
48	Treatment of food industry wastewater in sequencing batch reactors. Environmental Technology (United Kingdom), 1990 , 11 , $499-508$.	1.2	4
49	Sulfideâ€Induced Inhibition of Anaerobic Digestion. Journal of Environmental Engineering, ASCE, 1988, 114, 1377-1391.	0.7	94
50	Anaerobic pretréatment of concentrated pharmaceutical wastes. Environmental Technology Letters, 1987, 8, 327-338.	0.4	4
51	A Comparison of Anaerobic Reactors Operating With and Without the Addition of Sulfates. Water Quality Research Journal of Canada, 1987, 22, 444-455.	1.2	3
52	Anaerobic treatment of high-sulfate wastes. Canadian Journal of Civil Engineering, 1986, 13, 423-428.	0.7	16