Yue-Sheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365.	5.8	515
2	"Waterâ€inâ€Salt―Electrolyte Makes Aqueous Sodiumâ€ion Battery Safe, Green, and Longâ€Lasting. Advai Energy Materials, 2017, 7, 1701189.	10.2	487
3	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 7445-7449.	7.2	439
4	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	5.2	432
5	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	5.8	426
6	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	5.8	316
7	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	3.8	213
8	A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy, 2017, 39, 489-498.	8.2	172
9	A Novel High Capacity Positive Electrode Material with Tunnelâ€īype Structure for Aqueous Sodiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1501005.	10.2	161
10	Lattice‧train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
11	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058.	10.2	157
12	Highly Active and Durable Singleâ€Atom Tungstenâ€Doped NiS _{0.5} Se _{0.5} Nanosheet @ NiS _{0.5} Se _{0.5} Nanorod Heterostructures for Water Splitting. Advanced Materials, 2022, 34, e2107053.	11.1	136
13	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222.	9.5	129
14	Highâ€Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908754.	7.8	126
15	Graphene Oxideâ€Template Controlled Cuboidâ€Shaped Highâ€Capacity VS ₄ Nanoparticles as Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1801806.	7.8	125
16	Feâ€Based Tunnelâ€Type Na _{0.61} [Mn _{0.27} Fe _{0.34} Ti _{0.39}]O ₂ Designed by a New Strategy as a Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501156.	10.2	122
17	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
18	Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. Journal of Power Sources, 2015, 273, 1120-1126.	4.0	115

YUE-SHENG WANG

#	Article	IF	CITATIONS
19	A General Carboxylateâ€Assisted Approach to Boost the ORR Performance of ZIFâ€Derived Fe/N/C Catalysts for Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2021, 31, 2009645.	7.8	98
20	Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Materials, 2019, 18, 269-279.	9.5	94
21	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	5.8	85
22	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 7571-7575.	1.6	84
23	Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Scientific Reports, 2016, 6, 18978.	1.6	67
24	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. Journal of Colloid and Interface Science, 2019, 538, 267-276.	5.0	63
25	Direct imaging of layered O3- and P2-Na _x Fe _{1/2} Mn _{1/2} O ₂ structures at the atomic scale. Physical Chemistry Chemical Physics, 2014, 16, 21946-21952.	1.3	50
26	Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. Journal of Power Sources, 2019, 444, 227310.	4.0	50
27	Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery. Scientific Reports, 2014, 4, 7231.	1.6	48
28	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â^'<i>x</i>}]O _{2Layeredâ€Oxide Cathode Materials for Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.}	`1.2	47
29	Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 9747-9755.	4.0	47
30	Ultra-low cost and highly stable hydrated FePO 4 anodes for aqueous sodium-ion battery. Journal of Power Sources, 2018, 374, 211-216.	4.0	44
31	Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochimica Acta, 2015, 158, 258-263.	2.6	43
32	A new Tin-based O3-Na0.9[Ni0.45â^'/2Mn Sn0.55â^'/2]O2 as sodium-ion battery cathode. Journal of Energy Chemistry, 2019, 31, 132-137.	7.1	39
33	High Rate and Long Cycle Life of a CNT/rGO/Si Nanoparticle Composite Anode for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2017, 34, 1700141.	1.2	38
34	ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells. Progress in Natural Science: Materials International, 2020, 30, 855-860.	1.8	37
35	High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO ₄ Anode. ACS Applied Materials & Interfaces, 2018, 10, 7061-7068.	4.0	34
36	High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries. Materials, 2018, 11, 1294.	1.3	34

YUE-SHENG WANG

#	Article	IF	CITATIONS
37	Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	5.2	34
38	Practical Challenges in Employing Graphene for Lithium-Ion Batteries and Beyond. Small Methods, 2017, 1, 1700099.	4.6	31
39	Pre-treatments of Lithium Foil Surface for Improving the Cycling Life of Li Metal Batteries. Frontiers in Materials, 2019, 6, .	1.2	28
40	KOH-doped polybenzimidazole membrane for direct hydrazine fuel cell. Journal of Colloid and Interface Science, 2020, 563, 27-32.	5.0	28
41	Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries. Journal of Power Sources, 2018, 378, 516-521.	4.0	24
42	Enhancing the electrochemical performance of an O3–NaCrO2 cathode in sodium-ion batteries by cation substitution. Journal of Power Sources, 2019, 435, 226760.	4.0	24
43	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	2.5	23
44	Size-controlled synthesis and morphology evolution of bismuth trifluoridenanocrystalsvia a novel solvent extraction route. Nanoscale, 2013, 5, 518-522.	2.8	20
45	Roles of Ti in Electrode Materials for Sodium-Ion Batteries. Frontiers in Energy Research, 2019, 7, .	1.2	20
46	Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries. Energies, 2018, 11, 2963.	1.6	19
47	A High-Temperature <i>β</i> -Phase NaMnO ₂ Stabilized by Cu Doping and Its Na Storage Properties. Chinese Physics Letters, 2018, 35, 048801.	1.3	18
48	Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes. Journal of Power Sources, 2020, 471, 228455.	4.0	17
49	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	2.5	15
50	Capacity Contribution Induced by Pseudo-Capacitance Adsorption Mechanism of Anode Carbonaceous Materials Applied in Potassium-ion Battery. Frontiers in Chemistry, 2019, 7, 640.	1.8	13
51	Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery. Electronic Materials Letters, 2019, 15, 428-436.	1.0	13
52	A New Oxyfluorinated Titanium Phosphate Anode for A High-Energy Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 1270-1274.	4.0	12
53	P2-Na0.55[Mg0.25Mn0.75]O2: An SEI-free anode for long-life and high-rate Na-ion batteries. Energy Storage Materials, 2022, 45, 92-100.	9.5	12
54	Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts. Journal of Materials Science and Technology, 2021, 62, 119-127.	5.6	11

#	Article	IF	CITATIONS
55	Na-K liquid alloy: A review on wettability enhancement and ionic carrier selection mechanism. Chinese Chemical Letters, 2021, 32, 983-989.	4.8	8