
Hilmi Demiray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10862272/publications.pdf Version: 2024-02-01

ΗΠΜΙ ΠΕΜΙΦΑΥ

#	Article	IF	CITATIONS
1	Analysis of periodic and solitary waves in a magnetosonic quantum dusty plasma. Indian Journal of Physics, 2021, 95, 1255-1261.	0.9	7
2	Analytical solution for nonplanar waves in a plasma with q-nonextensive nonthermal velocity distribution: Weighted residual method. Chaos, Solitons and Fractals, 2020, 130, 109448.	2.5	14
3	Modulational instability of acoustic waves in a dusty plasma with nonthermal electrons and trapped ions. Chaos, Solitons and Fractals, 2019, 121, 50-58.	2.5	19
4	Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution. Physics of Plasmas, 2018, 25, .	0.7	17
5	Modulation of cylindrical (spherical) waves in a plasma with vortex electron distribution. Physics of Plasmas, 2018, 25, .	0.7	1
6	Modulation of electron-acoustic waves in a plasma with kappa distribution. Physics of Plasmas, 2016, 23, .	0.7	22
7	Modulation of Electron-Acoustic Waves in a Plasma with Vortex Electron Distribution. International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16, 61-66.	0.4	6
8	Re-visiting the head-on collision problem between two solitary waves in shallow water. International Journal of Non-Linear Mechanics, 2015, 69, 66-70.	1.4	12
9	Interactions of nonlinear electron-acoustic solitary waves with vortex electron distribution. Physics of Plasmas, 2015, 22, .	0.7	1
10	An analysis of higher order terms for ion-acoustic waves by use of the modified Poincaré-Lighthill-Kuo method. Indian Journal of Pure and Applied Mathematics, 2015, 46, 669-678.	0.3	0
11	On head-on collision between two solitary waves in shallow water: the use of the extended PLK method. Nonlinear Dynamics, 2015, 82, 73-84.	2.7	7
12	A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution. Physics of Plasmas, 2015, 22, 092105.	0.7	16
13	A Study of Higher Order Terms in Shallow Water Waves via Modified PLK Method. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15, .	0.4	0
14	A note on the progressive wave solution of the perturbed Korteweg–deVries equation with variable dissipation. Applied Mathematics and Computation, 2014, 248, 562-566.	1.4	0
15	Contribution of higher order terms in electron-acoustic solitary waves with vortex electron distribution. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 1223-1231.	0.7	4
16	Extended Reductive Perturbation Method and Its Relation to the Re-normalization Method. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, .	0.4	1
17	An Application of the Modified Reductive Perturbation Method to a Generalized Boussinesq Equation. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 27-31.	0.4	0
18	An Application of Multiple-Time Scale Perturbation Method to Nonlinear Ion-Acoustic Waves. Journal of the Physical Society of Japan, 2012, 81, 024003.	0.7	0

#	Article	IF	CITATIONS
19	A note on the amplitude modulation of symmetric regularized long-wave equation with quartic nonlinearity. Journal of Engineering Mathematics, 2012, 77, 181-186.	0.6	1
20	An application of modified reductive perturbation method to long water waves. International Journal of Engineering Science, 2011, 49, 1397-1403.	2.7	3
21	Multiple time scale formalism and its application to long water waves. Applied Mathematical Modelling, 2010, 34, 1187-1193.	2.2	4
22	Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg–de Vries equation. Computers and Mathematics With Applications, 2010, 60, 1747-1755.	1.4	13
23	Modulation of Generalized Symmetrie Regularized Long-wave Equation: Generalized Nonlinear SchrĶdinger equation. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11,	0.4	Ο
24	Waves in an elastic tube filled with a heterogeneous fluid of variable viscosity. International Journal of Non-Linear Mechanics, 2009, 44, 590-595.	1.4	2
25	Head-on-collision of nonlinear waves in a fluid of variable viscosity contained in an elastic tube. Chaos, Solitons and Fractals, 2009, 41, 1578-1586.	2.5	9
26	Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves. Chaos, Solitons and Fractals, 2009, 42, 358-364.	2.5	28
27	Forced KdV equation in a fluid-filled elastic tube with variable initial stretches. Chaos, Solitons and Fractals, 2009, 42, 1388-1395.	2.5	4
28	Weakly nonlinear waves in a fluid with variable viscosity contained in a prestressed thin elastic tube. Chaos, Solitons and Fractals, 2008, 36, 196-202.	2.5	11
29	Forced Korteweg-de Vries–Burgers equation in an elastic tube filled with a variable viscosity fluid. Chaos, Solitons and Fractals, 2008, 38, 1134-1145.	2.5	14
30	Nonlinear waves in an elastic tube with variable prestretch filled with a fluid of variable viscosity. International Journal of Engineering Science, 2008, 46, 949-957.	2.7	3
31	Non-linear waves in a fluid-filled inhomogeneous elastic tube with variable radius. International Journal of Non-Linear Mechanics, 2008, 43, 241-245.	1.4	12
32	Weakly non-linear waves in a fluid-filled elastic tube with variable prestretch. International Journal of Non-Linear Mechanics, 2008, 43, 887-891.	1.4	4
33	Nonlinear Wave Modulation in a Fluid-Filled Elastic Tube with Stenosis. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2008, 63, 24-34.	0.7	4
34	Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation. Springer Proceedings in Physics, 2008, , 157-163.	0.1	0
35	Travelling Waves In A Prestressed Elastic Tube Filled With A Fluid Of Variable Viscosity. Springer Proceedings in Physics, 2008, , 101-110.	0.1	0
36	Interactions of Nonlinear Waves in Fluid-Filled Elastic Tubes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 21-28.	0.7	1

#	Article	IF	CITATIONS
37	The Modified Reductive Perturbation Method as Applied to the Boussinesq Equation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 347-352.	0.7	1
38	Solitary waves in a fluid-filled thin elastic tube with variable cross-section. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 735-744.	1.7	4
39	Waves in fluid-filled elastic tubes with a stenosis: Variable coefficients KdV equations. Journal of Computational and Applied Mathematics, 2007, 202, 328-338.	1.1	18
40	Interactions of nonlinear ion-acoustic waves in a collisionless plasma. Journal of Computational and Applied Mathematics, 2007, 206, 826-831.	1.1	21
41	The effect of a bump in an elastic tube on wave propagation in a viscous fluid of variable viscosity. Applied Mathematics and Computation, 2007, 187, 1574-1583.	1.4	2
42	Interaction of nonlinear waves governed by Boussinesq equation. Chaos, Solitons and Fractals, 2006, 30, 1185-1189.	2.5	6
43	Non-linear waves in a viscous fluid contained in an elastic tube with variable cross-section. International Journal of Non-Linear Mechanics, 2006, 41, 258-270.	1.4	5
44	Reflection and transmission of nonlinear waves from arterial branching. International Journal of Engineering Science, 2006, 44, 1164-1172.	2.7	0
45	NONLINEAR WAVES IN FLUID-FILLED ELASTIC TUBES: A MODEL TO LARGE ARTERIES. , 2006, , 143-150.		0
46	A complex travelling wave solution to the KdV–Burgers equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 344, 418-422.	0.9	9
47	Weakly non-linear waves in a tapered elastic tube filled with an inviscid fluid. International Journal of Non-Linear Mechanics, 2005, 40, 785-793.	1.4	13
48	Weakly nonlinear waves in a viscous fluid contained in a viscoelastic tube with variable cross-section. European Journal of Mechanics, A/Solids, 2005, 24, 337-347.	2.1	10
49	Complex travelling wave solutions to the KdV and Burgers equations. Applied Mathematics and Computation, 2005, 162, 925-930.	1.4	3
50	Higher order approximations in reductive perturbation method: strongly dispersive waves. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 549-558.	1.7	10
51	On some nonlinear waves in fluid-filled viscoelastic tubes: weakly dispersive case. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 425-440.	1.7	12
52	Head-on collision of solitary waves in fluid-filled elastic tubes. Applied Mathematics Letters, 2005, 18, 941-950.	1.5	47
53	Modulation of nonlinear waves in a fluid-filled elastic tube with stenosis. International Journal of Mathematics and Mathematical Sciences, 2004, 2004, 3205-3218.	0.3	1
54	Modulation of nonlinear waves near the marginal state of instability in fluid-filled elastic tubes. Applied Mathematics and Computation, 2004, 149, 83-101.	1.4	1

#	Article	IF	CITATIONS
55	Solitary waves in a tapered prestressed fluid-filled elastic tube. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 282-294.	0.7	8
56	A travelling wave solution to the KdV–Burgers equation. Applied Mathematics and Computation, 2004, 154, 665-670.	1.4	36
57	Amplitude modulation of nonlinear waves in a fluid-filled tapered elastic tube. Applied Mathematics and Computation, 2004, 154, 747-767.	1.4	12
58	On the existence of some evolution equations in fluid-filled elastic tubes and their progressive wave solutions. International Journal of Engineering Science, 2004, 42, 1693-1706.	2.7	4
59	The effect of a bump on wave propagation in a fluid-filled elastic tube. International Journal of Engineering Science, 2004, 42, 203-215.	2.7	35
60	Contributions of higher order terms to nonlinear waves in fluid-filled elastic tubes: strongly dispersive case. International Journal of Engineering Science, 2003, 41, 1387-1403.	2.7	3
61	A note on the exact travelling wave solution to the KdV–Burgers equation. Wave Motion, 2003, 38, 367-369.	1.0	37
62	A note on the analytical solution to the modified perturbed Korteweg–de Vries equation. Applied Mathematics and Computation, 2003, 134, 501-505.	1.4	3
63	An analytical solution to the dissipative nonlinear SchrĶdinger equation. Applied Mathematics and Computation, 2003, 145, 179-184.	1.4	16
64	Contribution of Higher Order Terms in Nonlinear Ion-Acoustic Waves: Strongly Dispersive Case. Journal of the Physical Society of Japan, 2002, 71, 1921-1930.	0.7	11
65	A note on the travelling wave solution to the perturbed Burgers' equation. Applied Mathematical Modelling, 2002, 26, 37-40.	2.2	6
66	A note on the solution of perturbed Korteweg–de Vries equation. Applied Mathematics and Computation, 2002, 132, 643-647.	1.4	18
67	Propagation of weakly nonlinear waves in fluid-filled thin elastic tubes. Applied Mathematics and Computation, 2002, 133, 29-41.	1.4	6
68	Nonlinear waves in a prestressed elastic tube filled with a layered fluid. International Journal of Engineering Science, 2002, 40, 713-726.	2.7	7
69	Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube. International Journal of Engineering Science, 2002, 40, 1897-1918.	2.7	5
70	Solitary waves in fluid-filled elastic tubes: weakly dispersive case. International Journal of Engineering Science, 2001, 39, 439-451.	2.7	10
71	Interactions of nonlinear acoustic waves in a fluid-filled elastic tube. International Journal of Engineering Science, 2001, 39, 563-581.	2.7	5
72	Solitary waves in elastic tubes filled with a layered fluid. International Journal of Engineering Science, 2001, 39, 629-639.	2.7	2

#	Article	IF	CITATIONS
73	Modulation of non-linear waves in a viscous fluid contained in an elastic tube. International Journal of Non-Linear Mechanics, 2001, 36, 649-661.	1.4	10
74	Localized travelling waves in a prestressed thick elastic tube. International Journal of Non-Linear Mechanics, 2001, 36, 1085-1095.	1.4	1
75	The boundary layer approximation and nonlinear waves in elastic tubes. International Journal of Engineering Science, 2000, 38, 1441-1457.	2.7	7
76	Modulation of non-linear axial and transverse waves in a fluid-filled thin elastic tube. International Journal of Non-Linear Mechanics, 2000, 35, 597-611.	1.4	6
77	Propagation of weakly nonlinear waves in fluid-filled thick viscoelastic tubes. Applied Mathematical Modelling, 1999, 23, 779-798.	2.2	6
78	Modulation of nonlinear waves in a thin elastic tube filled with a viscous fluid. International Journal of Engineering Science, 1999, 37, 1877-1891.	2.7	5
79	Weakly nonlinear waves in a prestressed thin elastic tube containing a viscous fluid. International Journal of Engineering Science, 1999, 37, 1859-1876.	2.7	18
80	Non-linear wave modulation in a prestressed fluid field thin elastic tube. International Journal of Non-Linear Mechanics, 1999, 34, 123-138.	1.4	4
81	Dressed solitary waves in fluid-filled elastic tubes. International Journal of Non-Linear Mechanics, 1999, 34, 185-196.	1.4	1
82	Non-linear wave modulation in a prestressed viscoelastic thin tube filled with an inviscid fluid. International Journal of Non-Linear Mechanics, 1999, 34, 571-588.	1.4	11
83	Non-linear waves in a fluid-filled thick elastic tube. International Journal of Non-Linear Mechanics, 1998, 33, 363-375.	1.4	6
84	Nonlinear waves in a thick-walled viscoelastic tube filled with an inviscid fluid. International Journal of Engineering Science, 1998, 36, 345-357.	2.7	14
85	Nonlinear wave modulation in a fluid filled thick elastic tube. International Journal of Engineering Science, 1998, 36, 1061-1082.	2.7	2
86	Solitary waves in a thick walled elastic tube. Applied Mathematical Modelling, 1998, 22, 583-599.	2.2	3
87	The effect of shear stress on solitary waves in arteries. Bulletin of Mathematical Biology, 1997, 59, 993-1012.	0.9	Ο
88	Harmonic waves in a prestressed thin elastic tube filled with a viscous fluid. Journal of Engineering Mathematics, 1997, 32, 305-320.	0.6	1
89	The effect of shear stress on solitary waves in arteries. Bulletin of Mathematical Biology, 1997, 59, 993-1012.	0.9	2
90	Effect of initial twist on wave characteristics in a prestressed fluid-filled elastic thin tube. Applied Mathematical Modelling, 1997, 21, 181-191.	2.2	0

#	Article	IF	CITATIONS
91	Small but finite amplitude waves in a prestressed viscoelastic thin tube filled with an inviscid fluid. International Journal of Engineering Science, 1997, 35, 353-363.	2.7	4
92	Solitary waves in initially stressed thin elastic tubes. International Journal of Non-Linear Mechanics, 1997, 32, 1165-1176.	1.4	13
93	Waves in initially stressed fluid-filled thick tubes. Journal of Biomechanics, 1997, 30, 273-276.	0.9	4
94	An evolution of pulse speed in arteries. Bulletin of Mathematical Biology, 1996, 58, 129-140.	0.9	1
95	Solitary waves in prestressed elastic tubes. Bulletin of Mathematical Biology, 1996, 58, 939-955.	0.9	89
96	Solitary waves in prestressed elastic tubes. Bulletin of Mathematical Biology, 1996, 58, 939-955.	0.9	39
97	Nonlinear waves in a prestressed thick elastic tube filled with an inviscid fluid. International Journal of Engineering Science, 1996, 34, 1519-1529.	2.7	8
98	The effect of quadrupole on bone remodeling. International Journal of Engineering Science, 1996, 34, 257-268.	2.7	4
99	An evolution of pulse speed in arteries. Bulletin of Mathematical Biology, 1996, 58, 129-140.	0.9	1
100	A quasi-linear constitutive relation for arterial wall materials. Journal of Biomechanics, 1996, 29, 1011-1014.	0.9	9
101	Non-symmetrical waves in a prestressed elastic tube filled with an inviscid fluid. International Journal of Engineering Science, 1994, 32, 605-616.	2.7	2
102	A viscoelastic model for arterial wall materials. International Journal of Engineering Science, 1994, 32, 1567-1578.	2.7	9
103	Torsional waves in a stressed elastic tube filled with a viscous fluid. International Journal of Engineering Science, 1992, 30, 771-780.	2.7	6
104	Wave propagation through a viscous fluid contained in a prestressed thin elastic tube. International Journal of Engineering Science, 1992, 30, 1607-1620.	2.7	88
105	Wave propagation in a prestressed elastic tube filled with a viscous fluid. International Journal of Engineering Science, 1991, 29, 575-585.	2.7	7
106	Pulse waves in a prestressed elastic tube. International Journal of Engineering Science, 1990, 28, 1-9.	2.7	4
107	Diatomic elastic dielectrics with polarization inertia. International Journal of Engineering Science, 1989, 27, 1275-1284.	2.7	3
108	A variational formulation of diatomic elastic dielectrics. International Journal of Engineering Science, 1988, 26, 865-871.	2.7	1

#	Article	IF	CITATIONS
109	A stress-strain relation for a rat abdominal aorta. Journal of Biomechanics, 1988, 21, 369-374.	0.9	47
110	Pulse velocities in initially stressed arteries. Journal of Biomechanics, 1988, 21, 55-58.	0.9	8
111	Acceleration waves in a diatomic solid. International Journal of Engineering Science, 1986, 24, 299-307.	2.7	0
112	Effects of twist on pulse waves in arteries. Bulletin of Mathematical Biology, 1985, 47, 495-502.	0.9	3
113	Incremental elastic modulus for ventricles in diastole. Journal of Biomechanics, 1984, 17, 621-626.	0.9	5
114	Electro-mechanical remodelling of bones. International Journal of Engineering Science, 1983, 21, 1117-1126.	2.7	11
115	On large periodic motions of arteries. Journal of Biomechanics, 1983, 16, 643-648.	0.9	12
116	On a class of finite deformations of elastic soft tissues. Bulletin of Mathematical Biology, 1982, 44, 175-192.	0.9	1
117	Electromechanical properties and related models of bone tissues. International Journal of Engineering Science, 1979, 17, 813-851.	2.7	36
118	A nonlocal model for plug formation in plates. International Journal of Engineering Science, 1978, 16, 287-297.	2.7	3
119	Impact of nonlocal thin elastic plates by a cylindrical projectile. International Journal of Engineering Science, 1978, 16, 905-916.	2.7	1
120	Perforation of Nonlocal Visco- Plastic Plates by a Cylindrical Projectile. Journal of the Franklin Institute, 1978, 306, 209-224.	1.9	0
121	A nonlocal continuum theory for diatomic elastic solids. International Journal of Engineering Science, 1977, 15, 623-644.	2.7	9
122	A mixture model for wet bones—I theory. International Journal of Engineering Science, 1977, 15, 707-718.	2.7	8
123	Large deformation analysis of some basic problems in biophysics. The Bulletin of Mathematical Biophysics, 1976, 38, 701-712.	0.5	85
124	A continuum theory of elastic solids with diatomic structure. International Journal of Engineering Science, 1973, 11, 1237-1246.	2.7	19
125	A note on the elasticity of soft biological tissues. Journal of Biomechanics, 1972, 5, 309-311.	0.9	345
126	On the nonlocal theory of quasi-static elastic dielectrics. International Journal of Engineering Science, 1972, 10, 285-292.	2.7	31