Sm Mirabedini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10862169/publications.pdf

Version: 2024-02-01

236925 345221 2,349 36 25 36 citations h-index g-index papers 36 36 36 2437 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anti-corrosion performance and mechanical properties of epoxy coatings containing microcapsules filled with linseed oil and modified ceria nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129157.	4.7	14
2	Degradation of pollutants in solid and gas states using waterborne acrylic nanocomposite paints. Building and Environment, 2022, 221, 109327.	6.9	1
3	Silane treatment of drop-on glass-beads and their performance in two-component traffic paints. Progress in Organic Coatings, 2021, 156, 106235.	3.9	8
4	Synthesis of a dual-microcapsule system comprising 2-ethyl hexyl acrylate monomer and benzoyl peroxide initiator and study of their application in capsular adhesives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127139.	4.7	3
5	Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings, 2020, 139, 105454.	3.9	16
6	Nanocomposite coatings comprising APS-treated linseed oil-embedded polyurea-formaldehyde microcapsules and nanoclay, part 2: Self-healing and corrosion resistance properties. Progress in Organic Coatings, 2020, 142, 105592.	3.9	14
7	Amino-silane surface modification of urea-formaldehyde microcapsules containing linseed oil for improved epoxy matrix compatibility. Part I: Optimizing silane treatment conditions. Progress in Organic Coatings, 2019, 136, 105242.	3.9	18
8	Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti-corrosion, morphology and adhesion study. Progress in Organic Coatings, 2019, 137, 105339.	3.9	24
9	Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Progress in Organic Coatings, 2017, 105, 212-224.	3.9	110
10	Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 750-759.	4.7	26
11	Preparation of Microcapsules Containing Benzoyl Peroxide Initiator with Gelatin-Gum Arabic/Polyurea-Formaldehyde Shell and Evaluating Their Storage Stability. ACS Applied Materials & Interfaces, 2017, 9, 20818-20825.	8.0	27
12	Durability and mechanical performance of a photo-catalytic water-based nanocomposite coating. Progress in Organic Coatings, 2017, 112, 254-262.	3.9	7
13	Mechanical and self-healing properties of a water-based acrylic latex containing linseed oil filled microcapsules: Effect of pre-silanization of microcapsules' shell compound. Composites Part B: Engineering, 2016, 85, 305-314.	12.0	28
14	Preparation of self-healing acrylic latex coatings using novel oil-filled ethyl cellulose microcapsules. Progress in Organic Coatings, 2015, 85, 168-177.	3.9	30
15	Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 71-80.	4.7	54
16	Photocatalytic activity of water-based acrylic coatings containing fluorosilane treated TiO2 nanoparticles. Progress in Organic Coatings, 2014, 77, 1325-1335.	3.9	19
17	Preparation and characterization of linseed oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 16-26.	4.7	80
18	Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia. Corrosion Science, 2013, 75, 134-141.	6.6	120

#	Article	IF	CITATIONS
19	The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Progress in Organic Coatings, 2013, 76, 1625-1632.	3.9	68
20	Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Progress in Organic Coatings, 2013, 76, 1016-1023.	3.9	62
21	Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: Characterization and mechanism. Advanced Powder Technology, 2012, 23, 428-436.	4.1	72
22	Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Applied Surface Science, 2012, 258, 4391-4396.	6.1	62
23	Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2095-2106.	7.6	53
24	Application of mixture experimental design to optimize formulation and performance of thermoplastic road markings. Progress in Organic Coatings, 2012, 75, 549-559.	3.9	29
25	Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 74-84.	4.7	73
26	Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corrosion Science, 2011, 53, 89-98.	6.6	379
27	Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Progress in Organic Coatings, 2011, 72, 453-460.	3.9	88
28	Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Applied Surface Science, 2011, 257, 4196-4203.	6.1	83
29	The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy. Corrosion Science, 2010, 52, 1948-1957.	6.6	89
30	Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings, 2009, 65, 222-228.	3.9	392
31	Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 80-86.	4.7	74
32	Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings. Corrosion Science, 2008, 50, 3280-3286.	6.6	71
33	Cure characterization of epoxy and polyester clear powder coatings using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA). Progress in Organic Coatings, 2005, 54, 164-169.	3.9	50
34	Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements. Progress in Organic Coatings, 2005, 54, 384-389.	3.9	32
35	Adhesive strength of powder coated aluminium substrates. International Journal of Adhesion and Adhesives, 2005, 25, 484-494.	2.9	14
36	Corrosion performance of powder coated aluminium using EIS. Progress in Organic Coatings, 2003, 46, 112-120.	3.9	59