
Nathalie Oulhen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10861870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos. Developmental Biology, 2022, 483, 128-142.	2.0	8
2	Post-transcriptional regulation of factors important for the germ line. Current Topics in Developmental Biology, 2022, 146, 49-78.	2.2	1
3	CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Developmental Biology, 2021, 472, 85-97.	2.0	15
4	Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biology, 2021, 48, 102091.	9.0	15
5	Somatic cell conversion to a germ cell lineage: A violation or a revelation?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 666-679.	1.3	8
6	A single cell RNA sequencing resource for early sea urchin development. Development (Cambridge), 2020, 147, .	2.5	36
7	Regulation of dynamic pigment cell states at single-cell resolution. ELife, 2020, 9, .	6.0	36
8	Dysfunctional MDR-1 disrupts mitochondrial homeostasis in the oocyte and ovary. Scientific Reports, 2019, 9, 9616.	3.3	12
9	Single cell RNAâ€seq in the sea urchin embryo show marked cellâ€type specificity in the Delta/Notch pathway. Molecular Reproduction and Development, 2019, 86, 931-934.	2.0	14
10	Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Developmental Biology, 2019, 452, 34-42.	2.0	20
11	Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs). Methods in Cell Biology, 2019, 150, 269-292.	1.1	6
12	Trapping, tagging and tracking: Tools for the study of proteins during early development of the sea urchin. Methods in Cell Biology, 2019, 151, 283-304.	1.1	0
13	Identifying gene expression from single cells to single genes. Methods in Cell Biology, 2019, 151, 127-158.	1.1	8
14	CRISPR/Cas9-mediated genome editing in sea urchins. Methods in Cell Biology, 2019, 151, 305-321.	1.1	14
15	Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reproductive Toxicology, 2017, 69, 121-131.	2.9	22
16	Transient translational quiescence in primordial germ cells. Development (Cambridge), 2017, 144, 1201-1210.	2.5	30
17	A quiet space during rush hour: Quiescence in primordial germ cells. Stem Cell Research, 2017, 25, 296-299.	0.7	8
18	Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Developmental Biology, 2016, 418, 146-156.	2.0	19

NATHALIE OULHEN

#	Article	IF	CITATIONS
19	Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mechanisms of Development, 2016, 142, 10-21.	1.7	16
20	Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo. Molecular Reproduction and Development, 2016, 83, 1046-1047.	2.0	29
21	English translation of Heinrich Anton de Bary's 1878 speech, â€~Die Erscheinung der Symbiose' (â€~De la)	Tj ETQq1	1,0.784314 81
22	Complexity of Yolk Proteins and Their Dynamics in the Sea Star <i>Patiria miniata</i> . Biological Bulletin, 2016, 230, 209-219.	1.8	5
23	Simple perfusion apparatus for manipulation, tracking, and study ofÂoocytes and embryos. Fertility and Sterility, 2015, 103, 281-290.e5.	1.0	28
24	Deadenylase depletion protects inherited mRNAs in primordial germ cells. Development (Cambridge), 2014, 141, 3134-3142.	2.5	31
25	Migration of sea urchin primordial germ cells. Developmental Dynamics, 2014, 243, C1.	1.8	0
26	Every which way—nanos gene regulation in echinoderms. Genesis, 2014, 52, 279-286.	1.6	11
27	The biology of the germ line in echinoderms. Molecular Reproduction and Development, 2014, 81, 679-711.	2.0	34
28	Migration of sea urchin primordial germ cells. Developmental Dynamics, 2014, 243, 917-927.	1.8	25
29	Dysferlin is essential for endocytosis in the sea star oocyte. Developmental Biology, 2014, 388, 94-102.	2.0	14
30	Conservation of sequence and function in fertilization of the cortical granule serine protease in echinoderms. Biochemical and Biophysical Research Communications, 2014, 450, 1135-1141.	2.1	3
31	Multidrug-resistant transport activity protects oocytes from chemotherapeutic agents and changes during oocyte maturation. Fertility and Sterility, 2013, 100, 1428-1435.e7.	1.0	24
32	Diversity in the fertilization envelopes of echinoderms. Evolution & Development, 2013, 15, 28-40.	2.0	23
33	The 3′UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin. Developmental Biology, 2013, 377, 275-283.	2.0	26
34	Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5′-cap and a 3′-UTR. Molecular Reproduction and Development, 2013, 80, 561-569.	2.0	13
35	mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells. Molecular Endocrinology, 2012, 26, 669-680.	3.7	29
36	The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Research, 2011, 39, 3496-3503.	14.5	42

NATHALIE OULHEN

#	Article	IF	CITATIONS
37	eIF4Eâ€Binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Molecular Reproduction and Development, 2010, 77, 83-91.	2.0	13
38	A Variant Mimicking Hyperphosphorylated 4E-BP Inhibits Protein Synthesis in a Sea Urchin Cell-Free, Cap-Dependent Translation System. PLoS ONE, 2009, 4, e5070.	2.5	31
39	Cyclin B synthesis and rapamycinâ€sensitive regulation of protein synthesis during starfish oocyte meiotic divisions. Molecular Reproduction and Development, 2008, 75, 1617-1626.	2.0	22
40	After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. Journal of Cell Science, 2007, 120, 425-434.	2.0	19