
Mario P Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10861684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SCD5-dependent inhibition of SPARC secretion hampers metastatic spreading and favors host immunity in a TNBC murine model. Oncogene, 2022, 41, 4055-4065.	2.6	10
2	Repurposing of the Antiepileptic Drug Levetiracetam to Restrain Neuroendocrine Prostate Cancer and Inhibit Mast Cell Support to Adenocarcinoma. Frontiers in Immunology, 2021, 12, 622001.	2.2	6
3	The evolutionarily conserved long nonâ€coding RNA <i>LINC00261</i> drives neuroendocrine prostate cancer proliferation and metastasis <i>via</i> distinct nuclear and cytoplasmic mechanisms. Molecular Oncology, 2021, 15, 1921-1941.	2.1	22
4	CD40 Activity on Mesenchymal Cells Negatively Regulates OX40L to Maintain Bone Marrow Immune Homeostasis Under Stress Conditions. Frontiers in Immunology, 2021, 12, 662048.	2.2	3
5	Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer. Cancer Research, 2021, 81, 4257-4274.	0.4	11
6	Infiltrating Mast Cell–Mediated Stimulation of Estrogen Receptor Activity in Breast Cancer Cells Promotes the Luminal Phenotype. Cancer Research, 2020, 80, 2311-2324.	0.4	28
7	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.4	81
8	SPARC Is a New Myeloid-Derived Suppressor Cell Marker Licensing Suppressive Activities. Frontiers in Immunology, 2019, 10, 1369.	2.2	44
9	Immune Checkpoint Ligand Reverse Signaling: Looking Back to Go Forward in Cancer Therapy. Cancers, 2019, 11, 624.	1.7	32
10	Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 1938-1951.	0.4	58
11	Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Research, 2019, 80, canres.1425.2019.	0.4	13
12	Cross-Talk between Myeloid-Derived Suppressor Cells and Mast Cells Mediates Tumor-Specific Immunosuppression in Prostate Cancer. Cancer Immunology Research, 2018, 6, 552-565.	1.6	44
13	OX40 triggering concomitant to IL12-engineered cell vaccine hampers the immunoprevention of HER2/neu-driven mammary carcinogenesis. Oncolmmunology, 2018, 7, e1465164.	2.1	3
14	Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunology, Immunotherapy, 2017, 66, 1059-1067.	2.0	36
15	Rheostatic Functions of Mast Cells in the Control of Innate and Adaptive Immune Responses. Trends in Immunology, 2017, 38, 648-656.	2.9	66
16	Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial–Stromal Tumors by Targeting PDGFR-β. Molecular Cancer Therapeutics, 2017, 16, 365-375.	1.9	11
17	On OX40 and PD-1 Combination: Why Should OX40 Be First in Sequence?. Clinical Cancer Research, 2017, 23, 5999-6001.	3.2	10
18	The good and bad of targeting cancer-associated extracellular matrix. Current Opinion in Pharmacology, 2017, 35, 75-82.	1.7	23

#	Article	IF	CITATIONS
19	Antibodyâ€mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities. FASEB Journal, 2017, 31, 5356-5370.	0.2	10
20	ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells. Frontiers in Immunology, 2017, 8, 1918.	2.2	72
21	Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity. Cell Reports, 2016, 17, 233-248.	2.9	84
22	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	5.8	2,076
23	CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget, 2016, 7, 79925-79942.	0.8	40
24	Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Oncotarget, 2016, 7, 3905-3920.	0.8	9
25	The ins and outs of osteopontin. Oncolmmunology, 2015, 4, e978711.	2.1	3
26	RORC1 Regulates Tumor-Promoting "Emergency―Granulo-Monocytopoiesis. Cancer Cell, 2015, 28, 253-269.	7.7	154
27	Mast Cells Boost Myeloid-Derived Suppressor Cell Activity and Contribute to the Development of Tumor-Favoring Microenvironment. Cancer Immunology Research, 2015, 3, 85-95.	1.6	59
28	Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. OncoImmunology, 2014, 3, e28989.	2.1	34
29	Defective Stromal Remodeling and Neutrophil Extracellular Traps in Lymphoid Tissues Favor the Transition from Autoimmunity to Lymphoma. Cancer Discovery, 2014, 4, 110-129.	7.7	100
30	Expression levels of insulin receptor substrate-1 modulate the osteoblastic differentiation of mesenchymal stem cells and osteosarcoma cells. Growth Factors, 2014, 32, 41-52.	0.5	18
31	Osteopontin Shapes Immunosuppression in the Metastatic Niche. Cancer Research, 2014, 74, 4706-4719.	0.4	110
32	Mast Cells and Immune Response in Cancer. , 2014, , 77-98.		0
33	The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miRâ€⊋21&222â€câ€FOS pathway. International Journal of Cancer, 2013, 133, 879-892.	2.3	55
34	Convergences and Divergences of Thymus- and Peripherally Derived Regulatory T Cells in Cancer. Frontiers in Immunology, 2013, 4, 247.	2.2	25
35	Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2012, 13, 15107-15125.	1.8	33
36	The Aryl Hydrocarbon Receptor Modulates Acute and Late Mast Cell Responses. Journal of Immunology, 2012, 189, 120-127.	0.4	70

#	Article	IF	CITATIONS
37	Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion. Blood, 2012, 120, 3541-3554.	0.6	44
38	Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood, 2012, 120, 3007-3018.	0.6	350
39	Modulation of FcεRI-dependent mast cell response by OX40L via Fyn, PI3K, and RhoA. Journal of Allergy and Clinical Immunology, 2012, 130, 751-760.e2.	1.5	23
40	SPARC Oppositely Regulates Inflammation and Fibrosis in Bleomycin-Induced Lung Damage. American Journal of Pathology, 2011, 179, 3000-3010.	1.9	62
41	The matricellular protein SPARC supports follicular dendritic cell networking toward Th17 responses. Journal of Autoimmunity, 2011, 37, 300-310.	3.0	29
42	Constitutive activation of the ETSâ€1â€miRâ€⊋22 circuitry in metastatic melanoma. Pigment Cell and Melanoma Research, 2011, 24, 953-965.	1.5	36
43	Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient KitW-sh/W-sh mice. Laboratory Investigation, 2011, 91, 627-641.	1.7	61
44	Intratumor OX40 stimulation inhibits IRF1 expression and ILâ€10 production by Treg cells while enhancing CD40L expression by effector memory T cells. European Journal of Immunology, 2011, 41, 3615-3626.	1.6	39
45	The bone marrow stroma in hematological neoplasms—a guilty bystander. Nature Reviews Clinical Oncology, 2011, 8, 456-466.	12.5	42
46	Mast Cell Targeting Hampers Prostate Adenocarcinoma Development but Promotes the Occurrence of Highly Malignant Neuroendocrine Cancers. Cancer Research, 2011, 71, 5987-5997.	0.4	124
47	Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 2010, 29, 295-307.	2.7	207
48	A nonâ€redundant role for OX40 in the competitive fitness of Treg in response to ILâ€2. European Journal of Immunology, 2010, 40, 2902-2913.	1.6	62
49	Oncogene-Driven Intrinsic Inflammation Induces Leukocyte Production of Tumor Necrosis Factor That Critically Contributes to Mammary Carcinogenesis. Cancer Research, 2010, 70, 7764-7775.	0.4	31
50	CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. Journal of Clinical Investigation, 2010, 120, 668-680.	3.9	150
51	Polyps Wrap Mast Cells and Treg within Tumorigenic Tentacles. Cancer Research, 2009, 69, 5619-5622.	0.4	17
52	Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood, 2009, 114, 2639-2648.	0.6	184
53	CD4+CD25+ Regulatory T Cells Suppress Mast Cell Degranulation and Allergic Responses through OX40-OX40L Interaction. Immunity, 2008, 29, 771-781.	6.6	333
54	Matricellular proteins at the crossroad of inflammation and cancer. Cancer Letters, 2008, 267, 245-253.	3.2	33

#	Article	IF	CITATIONS
55	The Promyelocytic Leukemia Zinc Finger–MicroRNA-221/-222 Pathway Controls Melanoma Progression through Multiple Oncogenic Mechanisms. Cancer Research, 2008, 68, 2745-2754.	0.4	357
56	Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti– <i>Salmonella typhimurium</i> immunity. Journal of Experimental Medicine, 2008, 205, 657-667.	4.2	22
57	Macrophage-Derived SPARC Bridges Tumor Cell-Extracellular Matrix Interactions toward Metastasis. Cancer Research, 2008, 68, 9050-9059.	0.4	174
58	OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. Journal of Experimental Medicine, 2008, 205, 825-839.	4.2	369
59	The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 425-425.	0.4	649
60	Amino-Biphosphonate–Mediated MMP-9 Inhibition Breaks the Tumor-Bone Marrow Axis Responsible for Myeloid-Derived Suppressor Cell Expansion and Macrophage Infiltration in Tumor Stroma. Cancer Research, 2007, 67, 11438-11446.	0.4	310
61	Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25â~' into CD25+ T regulatory cells. Blood, 2007, 109, 2871-2877.	0.6	357
62	Regulatory T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nature Reviews Cancer, 2007, 7, 880-887.	12.8	379
63	Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 454-461.	1.4	123
64	Triggering CD40 on endothelial cells contributes to tumor growth. Journal of Experimental Medicine, 2006, 203, 2441-2450.	4.2	73
65	CD25+ Regulatory T Cell Depletion Augments Immunotherapy of Micrometastases by an IL-21-Secreting Cellular Vaccine. Journal of Immunology, 2006, 176, 1750-1758.	0.4	96
66	Tumor-Induced Expansion of Regulatory T Cells by Conversion of CD4+CD25â^' Lymphocytes Is Thymus and Proliferation Independent. Cancer Research, 2006, 66, 4488-4495.	0.4	230
67	p50 Nuclear Factor-κB Overexpression in Tumor-Associated Macrophages Inhibits M1 Inflammatory Responses and Antitumor Resistance. Cancer Research, 2006, 66, 11432-11440.	0.4	397
68	Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 2006, 116, 2777-2790.	3.9	723
69	Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood, 2005, 105, 2845-2851.	0.6	358
70	Interleukin-12 production by leukemia-derived dendritic cells counteracts the inhibitory effect of leukemic microenvironment on T cells. Experimental Hematology, 2005, 33, 1521-1530.	0.2	44
71	CD40/CD40L interaction regulates CD4+CD25+ T reg homeostasis through dendritic cell-produced IL-2. European Journal of Immunology, 2005, 35, 557-567.	1.6	108
72	Targeting Myelomonocytic Cells to Revert Inflammation-Dependent Cancer Promotion: Figure 1 Cancer Research, 2005, 65, 9113-9116.	0.4	88

#	Article	IF	CITATIONS
73	Redirecting <i>In vivo</i> Elicited Tumor Infiltrating Macrophages and Dendritic Cells towards Tumor Rejection. Cancer Research, 2005, 65, 3437-3446.	0.4	498
74	Accelerated dendritic-cell migration and T-cell priming in SPARC-deficient mice. Journal of Cell Science, 2005, 118, 3685-3694.	1.2	60
75	Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4185-4190.	3.3	271
76	Cancer Immunotherapy Based on Killing of Salmonella-Infected Tumor Cells. Cancer Research, 2005, 65, 3920-3927.	0.4	157
77	IL-21 Induces Tumor Rejection by Specific CTL and IFN-Î ³ -Dependent CXC Chemokines in Syngeneic Mice. Journal of Immunology, 2004, 172, 1540-1547.	0.4	146
78	Intralesional Injection of Adenovirus Encoding CC Chemokine Ligand 16 Inhibits Mammary Tumor Growth and Prevents Metastatic-Induced Death after Surgical Removal of the Treated Primary Tumor. Journal of Immunology, 2004, 172, 4026-4036.	0.4	38
79	Role of PLZF in melanoma progression. Oncogene, 2004, 23, 4567-4576.	2.6	62
80	Enhanced Efficacy of Tumor Cell Vaccines Transfected with Secretable hsp70. Cancer Research, 2004, 64, 1502-1508.	0.4	60
81	HOXB7 expression is regulated by the transcription factors NF-Y, YY1, Sp1 and USF-1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1626, 1-9.	2.4	18
82	Leukocyte, Rather than Tumor-produced SPARC, Determines Stroma and Collagen Type IV Deposition in Mammary Carcinoma. Journal of Experimental Medicine, 2003, 198, 1475-1485.	4.2	124
83	OX40 Ligand-Transduced Tumor Cell Vaccine Synergizes with GM-CSF and Requires CD40-Apc Signaling to Boost the Host T Cell Antitumor Response. Journal of Immunology, 2003, 170, 99-106.	0.4	67
84	Lipopolysaccharide or Whole Bacteria Block the Conversion of Inflammatory Monocytes into Dendritic Cells In Vivo. Journal of Experimental Medicine, 2003, 198, 1253-1263.	4.2	107
85	IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice. Journal of Immunology, 2003, 170, 270-278.	0.4	445
86	Autologous and MHC class I–negative allogeneic tumor cells secreting IL-12 together cure disseminated A20 lymphoma. Blood, 2003, 101, 568-575.	0.6	24
87	Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood, 2003, 102, 2138-2145.	0.6	260
88	Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. Journal of Clinical Investigation, 2003, 111, 1161-1170.	3.9	27
89	Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. Journal of Clinical Investigation, 2003, 111, 1161-1170.	3.9	105
90	Reversal of Tumor-induced Dendritic Cell Paralysis by CpG Immunostimulatory Oligonucleotide and Anti–Interleukin 10 Receptor Antibody. Journal of Experimental Medicine, 2002, 196, 541-549.	4.2	322

#	Article	IF	CITATIONS
91	Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine and Growth Factor Reviews, 2002, 13, 155-168.	3.2	627
92	IFN-Î ³ -independent synergistic effects of IL-12 and IL-15 induce anti-tumor immune responses in syngeneic mice. European Journal of Immunology, 2002, 32, 1914.	1.6	42
93	Antitumor effect of interleukin (IL)-12 in the absence of endogenous IFN-gamma: a role for intrinsic tumor immunogenicity and IL-15. Cancer Research, 2002, 62, 4390-7.	0.4	25
94	The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 2001, 97, 339-345.	0.6	375
95	IL-12 Inhibition of Endothelial Cell Functions and Angiogenesis Depends on Lymphocyte-Endothelial Cell Cross-Talk. Journal of Immunology, 2001, 166, 3890-3899.	0.4	157
96	Combined Allogeneic Tumor Cell Vaccination and Systemic Interleukin 12 Prevents Mammary Carcinogenesis in HER-2/neu Transgenic Mice. Journal of Experimental Medicine, 2001, 194, 1195-1206.	4.2	218
97	Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats. Journal of Neurosurgery, 2000, 92, 419-427.	0.9	60
98	DNA Vaccination Against Rat Her-2/Neu p185 More Effectively Inhibits Carcinogenesis Than Transplantable Carcinomas in Transgenic BALB/c Mice. Journal of Immunology, 2000, 165, 5133-5142.	0.4	326
99	Immunizing Potential of Cytokine-Transduced Tumor Cells. , 2000, 35, 3-26.		0
100	Dendritic Cells Infiltrating Tumors Cotransduced with Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf) and Cd40 Ligand Genes Take up and Present Endogenous Tumor-Associated Antigens, and Prime Naive Mice for a Cytotoxic T Lymphocyte Response. Journal of Experimental Medicine, 1999, 190, 125-134.	4.2	168
101	Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene, 1999, 18, 1993-2001.	2.6	54
102	Interleukin-12 as an Adjuvant for Cancer Immunotherapy. Methods, 1999, 19, 114-120.	1.9	60
103	Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour. , 1998, 186, 390-397.		13
104	Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene, 1998, 16, 3285-3289.	2.6	78
105	Interferon γ–independent Rejection of Interleukin 12–transduced Carcinoma Cells Requires CD4+ T Cells and Granulocyte/Macrophage Colony–stimulating Factor. Journal of Experimental Medicine, 1998, 188, 133-143.	4.2	54
106	Interleukin 12–mediated Prevention of Spontaneous Mammary Adenocarcinomas in Two Lines of Her-2/neu Transgenic Mice. Journal of Experimental Medicine, 1998, 188, 589-596.	4.2	291
107	Antitumor Efficacy of Adenocarcinoma Cells Engineered to Produce Interleukin 12 (IL-12) or Other Cytokines Compared With Exogenous IL-12. Journal of the National Cancer Institute, 1997, 89, 1049-1058.	3.0	158
108	Cytokine Gene Transduction in the Immunotherapy of Cancer. Advances in Pharmacology, 1997, 40, 259-307.	1.2	43

#	ARTICLE	IF	CITATIONS
109	Cytokines, tumour-cell death and immunogenicity: a question of choice. Trends in Immunology, 1997, 18, 32-36.	7.5	161
110	The defined attenuatedListeria monocytogenes Δmpl2 mutant is an effective oral vaccine carrier to trigger a long-lasting immune response against a mouse fibrosarcoma. European Journal of Immunology, 1997, 27, 1570-1575.	1.6	49
111	Genetic modification of a carcinoma with the IL-4 gene increases the influx of dendritic cells relative to other cytokines. European Journal of Immunology, 1997, 27, 2375-2382.	1.6	47
112	IL-1α gene-transfected human melanoma cells increase tumor-cell adhesion to endothelial cells and their retention in the lung of nude mice. , 1996, 67, 856-863.		34
113	CD4 T cells inhibitin vivo the CD8-mediated immune response against murine colon carcinoma cells transduced with interleukin-12 genes. European Journal of Immunology, 1995, 25, 137-146.	1.6	120
114	Anin vivo model to compare human leukocyte infiltration in carcinoma xenografts producing different chemokines. International Journal of Cancer, 1995, 62, 572-578.	2.3	29
115	Tumor cells engineered to produce cytokines or cofactors as cellular vaccines: Do animal studies really support clinical trials?. Cancer Immunology, Immunotherapy, 1995, 41, 265-270.	2.0	20
116	Tumor cells engineered to produce cytokines or cofactors as cellular vaccines: do animal studies really support clinical trials?. Cancer Immunology, Immunotherapy, 1995, 41, 265-270.	2.0	2
117	Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. International Journal of Cancer, 1994, 56, 853-857.	2.3	222
118	Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now?. Trends in Immunology, 1994, 15, 48-51.	7.5	255
119	Down-regulation of SPARC/Osteonectin/BM-40 expression in methylcholanthrene-induced fibrosarcomas and in kirsten-MSV transformed fibroblasts. European Journal of Cancer & Clinical Oncology, 1991, 27, 58-62.	0.9	11