Jennifer Tsoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086129/publications.pdf

Version: 2024-02-01

567144 677027 4,401 21 15 22 h-index citations g-index papers 22 22 22 9407 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PAK4 inhibition improves PD-1 blockade immunotherapy. Nature Cancer, 2020, 1, 46-58.	5.7	85
2	Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 2020, 370, 1099-1104.	6.0	85
3	Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discovery, 2020, 10, 1140-1157.	7.7	97
4	Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nature Communications, 2020, 11, 660.	5 . 8	68
5	Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nature Medicine, 2019, 25, 936-940.	15.2	246
6	Interleukin 32 expression in human melanoma. Journal of Translational Medicine, 2019, 17, 113.	1.8	11
7	A Pilot Trial of the Combination of Transgenic NY-ESO-1–reactive Adoptive Cellular Therapy with Dendritic Cell Vaccination with or without Ipilimumab. Clinical Cancer Research, 2019, 25, 2096-2108.	3.2	69
8	Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 2018, 8, 730-749.	7.7	367
9	Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell, 2018, 33, 890-904.e5.	7.7	575
10	Immunotherapy Resistance by Inflammation-Induced Dedifferentiation. Cancer Discovery, 2018, 8, 935-943.	7.7	130
11	Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13679-13684.	3.3	196
12	CRAF R391W is a melanoma driver oncogene. Scientific Reports, 2016, 6, 27454.	1.6	13
13	Response to Programmed Cell Death-1 Blockade in a Murine Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells. Cancer Immunology Research, 2016, 4, 845-857.	1.6	110
14	Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in <i>BRAF</i> ^{<i>V600E</i>} melanoma. Science Translational Medicine, 2015, 7, 279ra41.	5 . 8	470
15	Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014, 5, 5712.	5 . 8	503
16	A practical approach to automate randomized design of experiments for ligand-binding assays. Bioanalysis, 2014, 6, 705-713.	0.6	5
17	CTLA4 Blockade Broadens the Peripheral T-Cell Receptor Repertoire. Clinical Cancer Research, 2014, 20, 2424-2432.	3.2	323
18	An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells. Science, 2013, 340, 626-630.	6.0	1,014

#	Article	IF	CITATIONS
19	Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development. Bioanalysis, 2013, 5, 1635-1648.	0.6	7
20	A strategy for improving comparability across sites for ligand binding assays measuring therapeutic proteins. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 729-734.	1.4	10
21	Applications of a planar electrochemiluminescence platform to support regulated studies of macromolecules: Benefits and limitations in assay range. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 626-632.	1.4	11