Ali Hajian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1086121/publications.pdf Version: 2024-02-01

Διι ΗλιιλΝ

#	Article	IF	CITATIONS
1	Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. Journal of Hazardous Materials, 2017, 324, 762-772.	6.5	244
2	Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta, 2020, 206, 120251.	2.9	225
3	A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4SnO2Gr ternary nanocomposite. Microchemical Journal, 2017, 131, 120-129.	2.3	116
4	Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosensors and Bioelectronics, 2017, 89, 829-836.	5.3	95
5	Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Mikrochimica Acta, 2014, 181, 1999-2008.	2.5	92
6	High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry, 2019, 130, 107348.	2.4	89
7	Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Materials Science and Engineering C, 2017, 71, 386-394.	3.8	74
8	Modified 3D Graphene-Au as a Novel Sensing Layer for Direct and Sensitive Electrochemical Determination of Carbaryl Pesticide in Fruit, Vegetable, and Water Samples. Food Analytical Methods, 2018, 11, 3005-3014.	1.3	70
9	A novel sensing layer based on metal–organic framework UiO-66 modified with TiO ₂ –graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New Journal of Chemistry, 2019, 43, 2600-2609.	1.4	70
10	Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon. Sensors and Actuators B: Chemical, 2018, 275, 180-189.	4.0	60
11	A novel platform based on graphene nanoribbons/protein capped Au-Cu bimetallic nanoclusters: Application to the sensitive electrochemical determination of bisphenol A. Microchemical Journal, 2019, 145, 242-251.	2.3	54
12	Modified fractal iron oxide magnetic nanostructure: A novel and high performance platform for redox protein immobilization, direct electrochemistry and bioelectrocatalysis application. Biosensors and Bioelectronics, 2016, 85, 814-821.	5.3	53
13	Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2013, 17, 2017-2025.	1.2	51
14	Electrosynthesis of Polythiophene Nanowires and Their Application for Sensing of Chlorpromazine. Journal of the Electrochemical Society, 2014, 161, B196-B200.	1.3	49
15	Magnetic Carbon Paste Electrode Modified with a High Performance Composite Based on Molecularly Imprinted Carbon Nanotubes for Sensitive Determination of Levofloxacin. Journal of the Electrochemical Society, 2016, 163, B422-B427.	1.3	47
16	A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters. New Journal of Chemistry, 2018, 42, 7213-7222.	1.4	40
17	Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer. Food Analytical Methods, 2019, 12, 1545-1555.	1.3	30
18	Electrosynthesis of high-density polythiophene nanotube arrays and their application for sensing of riboflavin. Journal of Molecular Liquids, 2014, 199, 150-155.	2.3	26

Ali Hajian

#	Article	IF	CITATIONS
19	Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug. Ionics, 2018, 24, 3209-3219.	1.2	26
20	Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor. Materials Science and Engineering C, 2016, 69, 122-127.	3.8	25
21	Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures. Journal of Solution Chemistry, 2013, 42, 2071-2086.	0.6	24
22	Design and Application of a Nonâ€enzymatic Sensor Based on Metalâ€organic Frameworks for the Simultaneous Determination of Carbofuran and Carbaryl in Fruits and Vegetables. Electroanalysis, 2019, 31, 2455-2465.	1.5	23
23	Electrodeposition of Pt Nanoparticles on New Porous Graphitic Carbon Nanostructures Prepared from Biomass for Fuel Cell and Methanol Sensing Applications. Electrocatalysis, 2015, 6, 220-228.	1.5	22
24	A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. Journal of the Electrochemical Society, 2019, 166, B1116-B1125.	1.3	22
25	Influence of the PCB Manufacturing Process on the Measurement Error of Planar Relative Permittivity Sensors Up To 100 GHz. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2793-2804.	2.9	18
26	Nanostructured Flower like Pt-Ru for Ethanol Oxidation and Determination. Journal of the Electrochemical Society, 2015, 162, B41-B46.	1.3	16
27	Electrochemiluminescent biosensor for ultrasensitive detection of lymphoma at the early stage using CD20 markers as B cell-specific antigens. Bioelectrochemistry, 2021, 138, 107730.	2.4	16
28	Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. Chemosphere, 2022, 292, 133440.	4.2	15
29	Synthesis and characterization of supported silica nano hollow spheres with CdS quantum dots. Journal of Molecular Liquids, 2012, 174, 124-128.	2.3	14
30	Absorbance-based Spectroelectrochemical Sensor for Determination of Ampyra Based on Electrochemical Preconcentration. Sensors and Actuators B: Chemical, 2020, 324, 128723.	4.0	14
31	A superficial approach for fabricating unique ternary AgI@TiO2/Zr-MOF composites: An excellent interfacial with improved photocatalytic light-responsive under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112717.	2.0	13
32	On the porosification of LTCC substrates with sodium hydroxide. Composites Part B: Engineering, 2019, 157, 14-23.	5.9	10
33	Impact of sintering temperature on phase composition, microstructure, and porosification behavior of LTCC substrates. Journal of the European Ceramic Society, 2022, 42, 5789-5800.	2.8	10
34	Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods. Superlattices and Microstructures, 2015, 81, 226-232.	1.4	9
35	Electrostatically Immobilized Hemoglobin on Silica-Coated Magnetic Nanoparticles for Simultaneous Determination of Dopamine, Uric Acid, and Folic Acid. Journal of the Electrochemical Society, 2016, 163, B609-B616.	1.3	9
36	Amin-functionalized magnetic-silica core-shell nanoparticles for removal of Hg ²⁺ from aqueous solution. Journal of Dispersion Science and Technology, 2017, 38, 750-756.	1.3	9

Ali Hajian

#	Article	IF	CITATIONS
37	Porosification behaviour of LTCC substrates with potassium hydroxide. Journal of the European Ceramic Society, 2018, 38, 2369-2377.	2.8	8
38	Wet-chemical porosification of LTCC substrates: Dissolution mechanism and mechanical properties. Microporous and Mesoporous Materials, 2019, 288, 109593.	2.2	7
39	On the Adsorption of Some Catechol Derivatives from Aqueous Solutions onto Activated Carbon Cloth: Equilibrium and Kinetic Studies. Journal of Dispersion Science and Technology, 2012, 33, 1629-1634.	1.3	6
40	Development of a Novel Biosensor for Nanomolar Detection of Methylparaben. Procedia Engineering, 2015, 120, 552-555.	1.2	5
41	Wet chemical porosification with phosphate buffer solutions for permittivity reduction of LTCC substrates. Journal of Alloys and Compounds, 2021, 863, 158059.	2.8	5
42	Tailored and deep porosification of LTCC substrates with phosphoric acid. Journal of the European Ceramic Society, 2019, 39, 3112-3119.	2.8	4
43	1,2,4-Triazole-3-thiol-protected silver-nanoparticles as a platform for ECE electrochemical reaction. Electrochemistry Communications, 2017, 82, 56-60.	2.3	2