Anna Musyanovych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10861090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	31.5	1,817
2	Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 2011, 5, 1657-1669.	14.6	516
3	Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules, 2015, 16, 1311-1321.	5.4	497
4	Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006, 27, 2820-2828.	11.4	279
5	Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells. Macromolecular Bioscience, 2008, 8, 1135-1143.	4.1	256
6	Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells. Macromolecular Chemistry and Physics, 2005, 206, 2440-2449.	2.2	174
7	Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions. Beilstein Journal of Nanotechnology, 2014, 5, 2403-2412.	2.8	165
8	From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A, 2010, 48, 493-515.	2.3	155
9	Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 2016, 85, 78-87.	11.4	141
10	BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromolecular Bioscience, 2011, 11, 628-638.	4.1	135
11	Carboxylated Superparamagnetic Iron Oxide Particles Label Cells Intracellularly Without Transfection Agents. Molecular Imaging and Biology, 2008, 10, 138-146.	2.6	133
12	Preparation of Biodegradable Polymer Nanoparticles by Miniemulsion Technique and Their Cell Interactions. Macromolecular Bioscience, 2008, 8, 127-139.	4.1	124
13	Enzyme Responsive Hyaluronic Acid Nanocapsules Containing Polyhexanide and Their Exposure to Bacteria To Prevent Infection. Biomacromolecules, 2013, 14, 1103-1112.	5.4	122
14	Effect of Hydrophilic Comonomer and Surfactant Type on the Colloidal Stability and Size Distribution of Carboxyl- and Amino-Functionalized Polystyrene Particles Prepared by Miniemulsion Polymerization. Langmuir, 2007, 23, 5367-5376.	3.5	120
15	Polymer Micro―and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromolecular Bioscience, 2014, 14, 458-477.	4.1	117
16	Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules, 2010, 11, 748-753.	5.4	112
17	Controlled Release from Polyurethane Nanocapsules via pH-, UV-Light- or Temperature-Induced Stimuli. Macromolecules, 2010, 43, 5083-5093.	4.8	98
18	Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale, 2011, 3, 2028.	5.6	96

ANNA MUSYANOVYCH

#	Article	IF	CITATIONS
19	Synthesis and Optimization of Gelatin Nanoparticles Using the Miniemulsion Process. Biomacromolecules, 2008, 9, 2383-2389.	5.4	93
20	Suppressing Unspecific Cell Uptake for Targeted Delivery Using Hydroxyethyl Starch Nanocapsules. Biomacromolecules, 2012, 13, 2704-2715.	5.4	89
21	Targeted lipid-coated nanoparticles: Delivery of tumor necrosis factor-functionalized particles to tumor cells. Journal of Controlled Release, 2009, 137, 69-77.	9.9	82
22	Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials, 2014, 35, 1944-1953.	11.4	74
23	Surface-Active Monomer as a Stabilizer for Polyurea Nanocapsules Synthesized via Interfacial Polyaddition in Inverse Miniemulsion. Langmuir, 2009, 25, 12084-12091.	3.5	73
24	Cross-Linked Starch Capsules Containing dsDNA Prepared in Inverse Miniemulsion as "Nanoreactors― for Polymerase Chain Reaction. Biomacromolecules, 2010, 11, 960-968.	5.4	63
25	Fluorescent Polyurethane Nanocapsules Prepared via Inverse Miniemulsion: Surface Functionalization for Use as Biocarriers. Macromolecular Bioscience, 2009, 9, 575-584.	4.1	62
26	Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 265-274.	4.3	59
27	Fluorescent Superparamagnetic Polylactide Nanoparticles by Combination of Miniemulsion and Emulsion/Solvent Evaporation Techniques. Macromolecular Chemistry and Physics, 2009, 210, 961-970.	2.2	58
28	Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization. Colloid and Polymer Science, 2009, 287, 1261-1271.	2.1	58
29	Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials, 2015, 49, 125-134.	11.4	53
30	Miniemulsion Droplets as Single Molecule Nanoreactors for Polymerase Chain Reaction. Biomacromolecules, 2005, 6, 1824-1828.	5.4	51
31	Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials, 2010, 31, 2064-2071.	11.4	51
32	(Oligo)mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. Journal of Materials Chemistry B, 2013, 1, 4338.	5.8	44
33	Nanostructured Coatings by Adhesion of Phosphonated Polystyrene Particles onto Titanium Surface for Implant Material Applications. ACS Applied Materials & Interfaces, 2010, 2, 2421-2428.	8.0	40
34	Hydrogels in Miniemulsions. Advances in Polymer Science, 2010, , 39-63.	0.8	38
35	Surface Click Reactions on Polymeric Nanocapsules for Versatile Functionalization. Macromolecules, 2012, 45, 3419-3427.	4.8	38
36	Towards copper-free nanocapsules obtained by orthogonal interfacial "click―polymerization in miniemulsion. Chemical Communications, 2012, 48, 5470.	4.1	37

#	Article	IF	CITATIONS
37	Grafting of Amino Functional Monomer onto Initiator-Modified Polystyrene Particles. Langmuir, 2005, 21, 2209-2217.	3.5	35
38	Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules, 2014, 47, 7194-7199.	4.8	32
39	Labeling of mesenchymal stromal cells with iron oxide–poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy, 2011, 13, 962-975.	0.7	30
40	Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine, 2013, 8, 699-713.	3.3	27
41	Janus nanoparticles with both faces selectively functionalized for click chemistry. Polymer Chemistry, 2014, 5, 4097.	3.9	22
42	DNA Amplification via Polymerase Chain Reaction Inside Miniemulsion Droplets with Subsequent Poly(<i>n</i> â€butylcyanoacrylate) Shell Formation and Delivery of Polymeric Capsules into Mammalian Cells. Macromolecular Bioscience, 2011, 11, 1099-1109.	4.1	21
43	ADMET reactions in miniemulsion. Journal of Polymer Science Part A, 2014, 52, 1300-1305.	2.3	18
44	Competitive Cellular Uptake of Nanoparticles Made From Polystyrene, Poly(methyl methacrylate), and Polylactide. Macromolecular Bioscience, 2012, 12, 454-464.	4.1	16
45	Design of Cross-Linked Starch Nanocapsules for Enzyme-Triggered Release of Hydrophilic Compounds. Processes, 2017, 5, 25.	2.8	16
46	Hydrolysis of poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) nanoparticles. Journal of Applied Polymer Science, 2013, 128, 3093-3098.	2.6	15
47	Polymer-Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 1. Latex/Cobalt Hexacyanoferrate(II) Composites for Cesium Fixation. ACS Applied Materials & Interfaces, 2014, 6, 16769-16776.	8.0	14
48	Synthesis of Poly(butylcyanoacrylate) Nanocapsules by Interfacial Polymerization in Miniemulsions for the Delivery of DNA Molecules. , 2008, , 120-127.		13
49	Biodegradable Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Calcium Phosphate. Macromolecular Chemistry and Physics, 2011, 212, 915-925.	2.2	13
50	pHâ€Sensitive Chitosanâ€based Hydrogel Nanoparticles through Miniemulsion Polymerization Mediated by Peroxide Containing Macromonomer. Macromolecular Bioscience, 2014, 14, 1076-1083.	4.1	13
51	Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI. Macromolecular Bioscience, 2014, 14, 1205-1214.	4.1	12
52	Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1585-1596.	3.3	11
53	Performing Encapsulation of dsDNA and a Polymerase Chain Reaction (PCR) inside Nanocontainers Using the Inverse Miniemulsion Process. International Journal of Artificial Organs, 2012, 35, 77-83.	1.4	9
54	Glutathioneâ€Responsive DNAâ€Based Nanocontainers Through an "Interfacial Click―Reaction in Inverse Miniemulsion. Macromolecular Chemistry and Physics, 2014, 215, 2457-2462.	2.2	9

ANNA MUSYANOVYCH

#	Article	IF	CITATIONS
55	Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry and Chemical Technology, 2017, 11, 449-453.	1.1	9
56	p <scp>H</scp> Stability of Poly(urethane/urea) Capsules Synthesized from Different Hydrophilic Monomers via Interfacial Polyaddition in the Inverse Miniemulsion Process. Macromolecular Symposia, 2013, 331-332, 71-80.	0.7	8
57	Magnetic Imaging of Encapsulated Superparamagnetic Nanoparticles by Data Fusion of Magnetic Force Microscopy and Atomic Force Microscopy Signals for Correction of Topographic Crosstalk. Nanomaterials, 2020, 10, 2486.	4.1	8
58	Formation of three-dimensional polymer structures through radical and ionic reactions of peroxychitosan. Studies in Natural Products Chemistry, 2020, , 365-390.	1.8	7
59	Uptake of polymeric nanoparticles in a human induced pluripotent stem cell-based blood–brain barrier model: Impact of size, material, and protein corona. Biointerphases, 2021, 16, 021004.	1.6	7
60	Hydroperoxide-Containing Terpolymers as Inisurfs in Emulsion Polymerization of Styrene. Langmuir, 2003, 19, 9619-9624.	3.5	6
61	Polymer–Inorganic Coatings Containing Nanosized Sorbents Selective to Radionuclides. 2. Latex/Tin Oxide Composites for Cobalt Fixation. ACS Applied Materials & Interfaces, 2014, 6, 22387-22392.	8.0	6
62	The Role of Nanoparticles on Topographic Crossâ€Talk in Electric Force Microscopy and Magnetic Force Microscopy. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900828.	1.8	6
63	How morphology influences relaxivity – comparative study of superparamagnetic iron oxide–polymer hybrid nanostructures. Contrast Media and Molecular Imaging, 2015, 10, 456-464.	0.8	5
64	Formulation of Nextâ€Generation Multicompartment Microcapsules by Reversible Electrostatic Attraction. Chemistry - A European Journal, 2021, 27, 9336-9341.	3.3	5
65	Polylactideâ€Based Nanoparticles with Tailorâ€Made Functionalization. Macromolecular Chemistry and Physics, 2015, 216, 1774-1781.	2.2	4
66	Poly(3â€hydroxybutirateâ€ <i>co</i> â€3â€hydroxyvalerate)–Polystyrene Hybrid Nanoparticles via Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2016, 10, 39-46.	1.5	2
67	Gelatinâ€Based Capsules through Interfacial Polymerization: Batch and Continuous Flow Synthesis. Chemical Engineering and Technology, 2019, 42, 2119-2126.	1.5	0

Targeted Polymeric Nanoparticles. , 2010, , 417-428.

0