Michael Fadeev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10859645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miRNA-Guided Imaging and Photodynamic Therapy Treatment of Cancer Cells Using Zn(II)-Protoporphyrin IX-Loaded Metal–Organic Framework Nanoparticles. ACS Nano, 2022, 16, 1791-1801.	14.6	38
2	Controlling electrocatalytic, photoelectrocatalytic, and load release processes using soft material-modified electrodes. Journal of Electroanalytical Chemistry, 2022, 904, 115926.	3.8	2
3	Aptamer-Modified Cu ²⁺ -Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymesâ€: Journal of the American Chemical Society, 2021, 143, 11510-11519.	13.7	66
4	Thermoplasmonicâ€Triggered Release of Loads from DNAâ€Modified Hydrogel Microcapsules Functionalized with Au Nanoparticles or Au Nanorods. Small, 2020, 16, e2000880.	10.0	32
5	Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas― Journal of the American Chemical Society, 2020, 142, 4223-4234.	13.7	53
6	Artificial Photosynthesis with Electron Acceptor/Photosensitizer-Aptamer Conjugates. Nano Letters, 2019, 19, 6621-6628.	9.1	12
7	Molecularly Imprinted Sites Translate into Macroscopic Shape-Memory Properties of Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 34282-34291.	8.0	14
8	Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials, self-healing matrices and controlled drug release systems. Polymer Chemistry, 2019, 10, 4106-4115.	3.9	51
9	Redox-Switchable Binding Properties of the ATP–Aptamer. Journal of the American Chemical Society, 2019, 141, 15567-15576.	13.7	47
10	Chemical and photochemical DNA "gears―reversibly control stiffness, shape-memory, self-healing and controlled release properties of polyacrylamide hydrogels. Chemical Science, 2019, 10, 1008-1016.	7.4	96
11	Metal Ionâ€Terpyridineâ€Functionalized Lâ€Tyrosinamide Aptamers: Nucleoapzymes for Oxygen Insertion into Cĩ£¿H Bonds and the Transformation of Lâ€Tyrosinamide into Amidodopachrome. Advanced Functional Materials, 2019, 29, 1901484.	14.9	12
12	DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. ACS Nano, 2019, 13, 3424-3433.	14.6	111
13	Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions. Polymer Chemistry, 2018, 9, 2905-2912.	3.9	44
14	Drug Carriers: Stimuliâ€Responsive Nucleic Acidâ€Based Polyacrylamide Hydrogelâ€Coated Metal–Organic Framework Nanoparticles for Controlled Drug Release (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870053.	14.9	10
15	Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles. Nanoscale, 2018, 10, 4650-4657.	5.6	70
16	Stimuliâ€Responsive Nucleic Acidâ€Based Polyacrylamide Hydrogelâ€Coated Metal–Organic Framework Nanoparticles for Controlled Drug Release. Advanced Functional Materials, 2018, 28, 1705137.	14.9	201
17	Multi-triggered Supramolecular DNA/Bipyridinium Dithienylethene Hydrogels Driven by Light, Redox, and Chemical Stimuli for Shape-Memory and Self-Healing Applications. Journal of the American Chemical Society, 2018, 140, 17691-17701.	13.7	148
18	Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chemical Science, 2018, 9, 7145-7152.	7.4	99

Michael Fadeev

#	Article	IF	CITATION
19	Stimuliâ€Responsive Donor–Acceptor and DNAâ€Crosslinked Hydrogels: Application as Shapeâ€Memory and Selfâ€Healing Materials. Advanced Functional Materials, 2018, 28, 1803111.	14.9	67
20	Catalyzed and Electrocatalyzed Oxidation of <scp>l</scp> -Tyrosine and <scp>l</scp> -Phenylalanine to Dopachrome by Nanozymes. Nano Letters, 2018, 18, 4015-4022.	9.1	31
21	Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions. Journal of the American Chemical Society, 2016, 138, 16112-16119.	13.7	105
22	Metal Nanoparticle‣oaded Mesoporous Carbon Nanoparticles: Electrical Contacting of Redox Proteins and Electrochemical Sensing Applications. Electroanalysis, 2015, 27, 2150-2157.	2.9	13
23	Electrically Contacted Bienzymeâ€Functionalized Mesoporous Carbon Nanoparticle Electrodes: Applications for the Development of Dual Amperometric Biosensors and Multifuelâ€Driven Biofuel Cells. Advanced Energy Materials, 2015, 5, 1401853.	19.5	39
24	Switchable Bifunctional Stimuliâ€Triggered Polyâ€ <i>N</i> â€Isopropylacrylamide/DNA Hydrogels. Angewandte Chemie, 2014, 126, 10298-10302.	2.0	24
25	Switchable Bifunctional Stimuliâ€Triggered Polyâ€ <i>N</i> â€Isopropylacrylamide/DNA Hydrogels. Angewandte Chemie - International Edition, 2014, 53, 10134-10138.	13.8	163