
Joris Proost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10859157/publications.pdf Version: 2024-02-01

LODIS PROOST

#	Article	IF	CITATIONS
1	Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy, 2020, 45, 17067-17075.	7.1	51
2	Structural and Opto-electronic characterization of CuO thin films prepared by DC reactive magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2020, 31, 4563-4573.	2.2	8
3	Review and analysis of demonstration projects on power-to-X pathways in the world. International Journal of Hydrogen Energy, 2019, 44, 27637-27655.	7.1	108
4	Incentives and legal barriers for power-to-hydrogen pathways: An internationalÂsnapshot. International Journal of Hydrogen Energy, 2019, 44, 11394-11401.	7.1	58
5	State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. International Journal of Hydrogen Energy, 2019, 44, 4406-4413.	7.1	173
6	Evolution of Water Diffusion in a Sorption-Enhanced Methanation Catalyst. Catalysts, 2018, 8, 341.	3.5	13
7	Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films. Journal of Applied Physics, 2018, 124, 225105.	2.5	2
8	Mechanical behavior of ultrathin sputter deposited porous amorphous Al2O3 films. Acta Materialia, 2017, 125, 27-37.	7.9	20
9	Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures. Journal of Applied Physics, 2017, 122, .	2.5	9
10	Effect of structural defects on the hydriding kinetics of nanocrystalline Pd thin films. International Journal of Hydrogen Energy, 2015, 40, 7335-7347.	7.1	23
11	On the Origin of Damped Electrochemical Oscillations at Silicon Anodes (Revisited). ChemPhysChem, 2014, 15, 3116-3124.	2.1	7
12	Effect of internal stress on the hydriding kinetics of nanocrystalline Pd thin films. Acta Materialia, 2013, 61, 2320-2329.	7.9	15
13	High resolution transmission electron microscopy characterization of fcc → 9R transformation in nanocrystalline palladium films due to hydriding. Applied Physics Letters, 2013, 102, .	3.3	22
14	In situ monitoring of electrostriction in anodic and thermal silicon dioxide thin films. Journal of Solid State Electrochemistry, 2013, 17, 1945-1954.	2.5	8
15	Electrochemical Characterization of Mass Transport in Porous Electrodes. Industrial & Engineering Chemistry Research, 2012, 51, 14229-14235.	3.7	5
16	An in situ study of the hydriding kinetics of Pd thin films. Physical Chemistry Chemical Physics, 2011, 13, 11412.	2.8	28
17	What controls the pore spacing in porous anodic oxides?. Electrochemistry Communications, 2010, 12, 1174-1176.	4.7	61
18	<i>In situ</i> detection of porosity initiation during aluminum thin film anodizing. Applied Physics	3.3	28

JORIS PROOST

#	Article	IF	CITATIONS
19	Large-scale synthesis of high-purity, one-dimensional α-Al2O3structures. Journal of Materials Chemistry, 2004, 14, 3058-3062.	6.7	7
20	Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition. Journal of Applied Physics, 2002, 91, 204.	2.5	56
21	In-situ study of the stiffness of alumina thin films during vapor deposition. Materials Research Society Symposia Proceedings, 2001, 672, 1.	0.1	1