Katherine Dean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10858813/publications.pdf Version: 2024-02-01

KATHEDINE DEAN

#	Article	IF	CITATIONS
1	Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose, 2014, 21, 4299-4308.	2.4	18
2	Effects of Formulation, Structure, and Processing on Biodegradation of Starches. , 2014, , 357-378.		6
3	Enhancement of proâ€degradant performance in polyethylene/starch blends as a function of distribution. Journal of Applied Polymer Science, 2013, 128, 591-596.	1.3	10
4	Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres. Journal of Polymers and the Environment, 2013, 21, 54-70.	2.4	50
5	New evidences of accelerating degradation of polyethylene by starch. Journal of Applied Polymer Science, 2013, 130, 2282-2287.	1.3	15
6	Starch Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 121-154.	0.3	8
7	Glycerol plasticised chitosan: A study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polymer Degradation and Stability, 2013, 98, 1236-1246.	2.7	30
8	Foaming behaviour and cell structure of poly(lactic acid) after various modifications. Polymer International, 2013, 62, 759-765.	1.6	32
9	Analysis of Protein/Clay Nano-Biocomposites Systems. Green Energy and Technology, 2012, , 345-363.	0.4	0
10	Biodegradation and Applications of Nanobiocomposites. Green Energy and Technology, 2012, , 409-442.	0.4	2
11	Biodegradation of sequentially surface treated lignocellulose reinforced polylactic acid composites: Carbon dioxide evolution and morphology. Polymer Degradation and Stability, 2012, 97, 430-438.	2.7	31
12	Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends. Journal of Applied Polymer Science, 2011, 119, 2189-2195.	1.3	34
13	Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers, 2011, 83, 1975-1983.	5.1	100
14	An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 2011, 36, 1015-1049.	11.8	404
15	Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polymer Degradation and Stability, 2010, 95, 1704-1707.	2.7	111
16	Design considerations for high-temperature respirometric biodegradation of polymers in compost. Polymer Testing, 2010, 29, 147-157.	2.3	15
17	A high-resolution solid-state NMR study on starch–clay nanocomposites and the effect of aging on clay dispersion. Polymer Journal, 2010, 42, 689-695.	1.3	10
18	Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochimica Acta, 2010, 509, 147-151.	1.2	66

KATHERINE DEAN

#	Article	IF	CITATIONS
19	Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. Journal of Cereal Science, 2009, 50, 241-247.	1.8	88

21	Thermal behaviour of poly(lactic acid) in contact with compressed carbon dioxide. Polymer International, 2009, 58, 368-372.	1.6	40
22	Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2630-2636.	2.4	85
23	Green Polymeric Blends and Composites from Renewable Resources. Macromolecular Symposia, 2007, 249-250, 535-539.	0.4	58
24	Wheat-Gluten-Based Natural Polymer Nanoparticle Composites. Biomacromolecules, 2007, 8, 345-353.	2.6	63
25	Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties. Journal of Applied Polymer Science, 2007, 103, 802-811.	1.3	44
26	Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. Journal of Applied Polymer Science, 2007, 103, 812-818.	1.3	55
27	Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology, 2007, 67, 413-421.	3.8	200
28	Polymer blends and composites from renewable resources. Progress in Polymer Science, 2006, 31, 576-602.	11.8	1,666
29	Non-Ionic, Poly(ethylene oxide)-Based Surfactants as Intercalants/Dispersants/Exfoliants for Poly(propylene)-Clay Nanocomposites. Macromolecular Materials and Engineering, 2006, 291, 37-52.	1.7	18
30	Novel Copolymers as Dispersants/Intercalants/Exfoliants for Polypropylene-Clay Nanocomposites. Macromolecular Symposia, 2006, 233, 170-179.	0.4	32
31	Effect of Curing Sequence on the Photopolymerization and Thermal Curing Kinetics of Dimethacrylate/Epoxy Interpenetrating Polymer Networks. Macromolecules, 2002, 35, 7942-7954.	2.2	89
32	Near-Infrared and Rheological Investigations of Epoxyâ^'Vinyl Ester Interpenetrating Polymer Networks. Macromolecules, 2001, 34, 6623-6630.	2.2	64
33	Control of gel time and exotherm behaviour during cure of unsaturated polyester resins. Polymer International, 2001, 50, 129-134.	1.6	30