
Daniel L Rubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10854950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated Identification and Measurement Extraction of Pancreatic Cystic Lesions from Free-Text Radiology Reports Using Natural Language Processing. Radiology: Artificial Intelligence, 2022, 4, e210092.	3.0	7
2	Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports. Journal of Digital Imaging, 2022, 35, 524-533.	1.6	7
3	Uncovering interpretable potential confounders in electronic medical records. Nature Communications, 2022, 13, 1014.	5.8	14
4	Toward Reduction in False-Positive Thyroid Nodule Biopsies with a Deep Learning–based Risk Stratification System Using US Cine-Clip Images. Radiology: Artificial Intelligence, 2022, 4, .	3.0	4
5	An integrated time adaptive geographic atrophy prediction model for SD-OCT images. Medical Image Analysis, 2021, 68, 101893.	7.0	12
6	Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. Journal of Biomedical Informatics, 2021, 113, 103656.	2.5	10
7	Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data. , 2021, , 101-112.		0
8	Learning Domain-Agnostic Visual Representation for Computational Pathology Using Medically-Irrelevant Style Transfer Augmentation. IEEE Transactions on Medical Imaging, 2021, 40, 3945-3954.	5.4	34
9	Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncology, The, 2021, 22, 132-141.	5.1	198
10	Biomedical Imaging Informatics. , 2021, , 299-362.		3
11	Al-based structure-function correlation in age-related macular degeneration. Eye, 2021, 35, 2110-2118.	1.1	8
12	Natural Language Processing to Identify Cancer Treatments With Electronic Medical Records. JCO Clinical Cancer Informatics, 2021, 5, 379-393.	1.0	21
13	Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset. Scientific Reports, 2021, 11, 8366.	1.6	31
14	Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration. Translational Vision Science and Technology, 2021, 10, 30.	1.1	14
15	Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. American Journal of Emergency Medicine, 2021, 51, 388-392.	0.7	5
16	Advancing Semantic Interoperability of Image Annotations: Automated Conversion of Non-standard Image Annotations in a Commercial PACS to the Annotation and Image Markup. Journal of Digital Imaging, 2020, 33, 49-53.	1.6	5
17	Progression of Photoreceptor Degeneration in Geographic Atrophy Secondary to Age-related Macular Degeneration. JAMA Ophthalmology, 2020, 138, 1026.	1.4	58
18	Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nature Communications, 2020, 11, 5116.	5.8	29

#	Article	IF	CITATIONS
19	Alcohol and Tobacco Use in Relation to Mammographic Density in 23,456 Women. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1039-1048.	1.1	11
20	Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Patterns, 2020, 1, 100019.	3.1	33
21	Accounting for data variability in multi-institutional distributed deep learning for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 700-708.	2.2	36
22	MS-CAM: Multi-Scale Class Activation Maps for Weakly-Supervised Segmentation of Geographic Atrophy Lesions in SD-OCT Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3443-3455.	3.9	34
23	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
24	Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer. American Journal of Roentgenology, 2020, 214, 885-892.	1.0	8
25	Spatial Characterization of Tumor Perfusion Properties from 3D DCE-US Perfusion Maps are Early Predictors of Cancer Treatment Response. Scientific Reports, 2020, 10, 6996.	1.6	9
26	Determinants of Cone and Rod Functions in Geographic Atrophy: Al-Based Structure-Function Correlation. American Journal of Ophthalmology, 2020, 217, 162-173.	1.7	35
27	Quantitative imaging feature pipeline: a web-based tool for utilizing, sharing, and building image-processing pipelines. Journal of Medical Imaging, 2020, 7, 1.	0.8	19
28	Clinical Trial Design and Development Work Group Within the Quantitative Imaging Network. Tomography, 2020, 6, 60-64.	0.8	2
29	Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Network Open, 2019, 2, e198719.	2.8	50
30	A Multi-Scale Deep Convolutional Neural Network For Joint Segmentation And Prediction Of Geographic Atrophy In SD-OCT Images. , 2019, , .		2
31	ls it possible to automatically assess pretreatment digital rectal examination documentation using natural language processing? A single-centre retrospective study. BMJ Open, 2019, 9, e027182.	0.8	6
32	Segmentation of Optic Disc and Cup-to-Disc Ratio Quantification Based on OCT Scans. Biological and Medical Physics Series, 2019, , 193-209.	0.3	0
33	Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm. Journal of Digital Imaging, 2019, 32, 544-553.	1.6	30
34	Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment. JAMIA Open, 2019, 2, 150-159.	1.0	35
35	A Probabilistic Model to Support Radiologists' Classification Decisions in Mammography Practice. Medical Decision Making, 2019, 39, 208-216.	1.2	4
36	Reproductive Factors and Mammographic Density: Associations Among 24,840 Women and Comparison of Studies Using Digitized Film-Screen Mammography and Full-Field Digital Mammography. American Journal of Epidemiology, 2019, 188, 1144-1154.	1.6	14

#	Article	IF	CITATIONS
37	Automatic inference of BI-RADS final assessment categories from narrative mammography report findings. Journal of Biomedical Informatics, 2019, 92, 103137.	2.5	14
38	Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Computer Methods and Programs in Biomedicine, 2019, 182, 105101.	2.6	15
39	Natural Language Processing Approaches to Detect the Timeline of Metastatic Recurrence of Breast Cancer. JCO Clinical Cancer Informatics, 2019, 3, 1-12.	1.0	43
40	Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Radiology, 2019, 290, 537-544.	3.6	142
41	Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artificial Intelligence in Medicine, 2019, 97, 79-88.	3.8	158
42	The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. British Journal of Radiology, 2019, 92, 20180228.	1.0	35
43	ePAD: An Image Annotation and Analysis Platform for Quantitative Imaging. Tomography, 2019, 5, 170-183.	0.8	30
44	Segmentation and Visualization of Drusen and Geographic Atrophy in SD-OCT Images. Biological and Medical Physics Series, 2019, , 281-344.	0.3	0
45	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
46	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183
47	Automatic information extraction from unstructured mammography reports using distributed semantics. Journal of Biomedical Informatics, 2018, 78, 78-86.	2.5	33
48	Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant Chemotherapy. Radiology, 2018, 288, 26-35.	3.6	102
49	Proposing New RadLex Terms by Analyzing Free-Text Mammography Reports. Journal of Digital Imaging, 2018, 31, 596-603.	1.6	9
50	Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Computerized Medical Imaging and Graphics, 2018, 65, 167-175.	3.5	62
51	Non–Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology, 2018, 286, 307-315.	3.6	140
52	Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images. Journal of Digital Imaging, 2018, 31, 403-414.	1.6	39
53	Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort. Journal of Biomedical Informatics, 2018, 77, 11-20.	2.5	61
54	A radiogenomic dataset of non-small cell lung cancer. Scientific Data, 2018, 5, 180202.	2.4	167

#	Article	IF	CITATIONS
55	The LOINC RSNA radiology playbook - a unified terminology for radiology procedures. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 885-893.	2.2	14
56	The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1219-1235.	0.4	30
57	Magnetic resonance imaging and molecular features associated with tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Research, 2018, 20, 101.	2.2	44
58	Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs. Journal of Biomedical Informatics, 2018, 84, 123-135.	2.5	29
59	Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images. Translational Vision Science and Technology, 2018, 7, 1.	1.1	54
60	A Scalable Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization. AMIA Annual Symposium proceedings, 2018, 2018, 215-224.	0.2	5
61	An Automated Feature Engineering for Digital Rectal Examination Documentation using Natural Language Processing. AMIA Annual Symposium proceedings, 2018, 2018, 288-294.	0.2	2
62	Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro-Oncology, 2017, 19, now270.	0.6	32
63	Adaptive local window for level set segmentation of CT and MRI liver lesions. Medical Image Analysis, 2017, 37, 46-55.	7.0	59
64	Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Scientific Reports, 2017, 7, 41674.	1.6	124
65	Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions. Journal of Digital Imaging, 2017, 30, 506-518.	1.6	2
66	Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 2017, 30, 449-459.	1.6	758
67	Automated detection of foveal center in <scp>SD</scp> â€ <scp>OCT</scp> images using the saliency of retinal thickness maps. Medical Physics, 2017, 44, 6390-6403.	1.6	9
68	Heterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast Cancer. Radiology, 2017, 285, 401-413.	3.6	92
69	Use of Radiology Procedure Codes in Health Care: The Need for Standardization and Structure. Radiographics, 2017, 37, 1099-1110.	1.4	26
70	Age at Menarche and Late Adolescent Adiposity Associated with Mammographic Density on Processed Digital Mammograms in 24,840 Women. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1450-1458.	1.1	12
71	Volumetric Image Registration From Invariant Keypoints. IEEE Transactions on Image Processing, 2017, 26, 4900-4910.	6.0	74
72	Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Medical Genomics, 2017, 10, 20.	0.7	9

#	Article	IF	CITATIONS
73	Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis. IEEE Transactions on Medical Imaging, 2017, 36, 781-791.	5.4	46
74	Common Data Elements in Radiology. Radiology, 2017, 283, 837-844.	3.6	74
75	Building and Querying RDF/OWL Database of Semantically Annotated Nuclear Medicine Images. Journal of Digital Imaging, 2017, 30, 4-10.	1.6	7
76	Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Radiology, 2017, 282, 348-355.	3.6	65
77	A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 48-55.	3.9	156
78	A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific Data, 2017, 4, 170177.	2.4	377
79	Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomedical Optics Express, 2017, 8, 1926.	1.5	31
80	Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers in Radiology. , 2017, , 379-410.		3
81	Individual Drusen Segmentation and Repeatability and Reproducibility of Their Automated Quantification in Optical Coherence Tomography Images. Translational Vision Science and Technology, 2017, 6, 12.	1.1	20
82	Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging. Journal of Medical Imaging, 2017, 5, 1.	0.8	10
83	Inferring Generative Model Structure with Static Analysis. Advances in Neural Information Processing Systems, 2017, 30, 239-249.	2.8	6
84	Intelligent Word Embeddings of Free-Text Radiology Reports. AMIA Annual Symposium proceedings, 2017, 2017, 411-420.	0.2	19
85	Toward Automated Pre-Biopsy Thyroid Cancer Risk Estimation in Ultrasound. AMIA Annual Symposium proceedings, 2017, 2017, 734-741.	0.2	2
86	Using automatically extracted information from mammography reports for decision-support. Journal of Biomedical Informatics, 2016, 62, 224-231.	2.5	44
87	Case-control study of mammographic density and breast cancer risk using processed digital mammograms. Breast Cancer Research, 2016, 18, 53.	2.2	18
88	Early-Stage Non–Small Cell Lung Cancer: Quantitative Imaging Characteristics of ¹⁸ F Fluorodeoxyglucose PET/CT Allow Prediction of Distant Metastasis. Radiology, 2016, 281, 270-278.	3.6	152
89	Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers. Ophthalmology, 2016, 123, 1737-1750.	2.5	63
90	Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor. Biomedical Optics Express, 2016, 7, 581.	1.5	62

#	Article	IF	CITATIONS
91	Quantitative Imaging in Cancer Clinical Trials. Clinical Cancer Research, 2016, 22, 284-290.	3.2	106
92	Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Medical Image Analysis, 2016, 30, 60-71.	7.0	168
93	Improved Patch-Based Automated Liver Lesion Classification by Separate Analysis of the Interior and Boundary Regions. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1585-1594.	3.9	40
94	A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. Journal of Neurosurgery, 2016, 124, 1008-1017.	0.9	40
95	Computational Challenges and Collaborative Projects in the NCI Quantitative Imaging Network. Tomography, 2016, 2, 242-249.	0.8	15
96	Visual Prognosis of Eyes Recovering From Macular Hole Surgery Through Automated Quantitative Analysis of Spectral-Domain Optical Coherence Tomography (SD-OCT) Scans. , 2015, 56, 4631.		23
97	Restricted Summed-Area Projection for Geographic Atrophy Visualization in SD-OCT Images. Translational Vision Science and Technology, 2015, 4, 2.	1.1	12
98	Localization of Damage in Progressive Hydroxychloroquine Retinopathy On and Off the Drug: Inner Versus Outer Retina, Parafovea Versus Peripheral Fovea. , 2015, 56, 3415.		82
99	Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection. Optics Express, 2015, 23, 31216.	1.7	22
100	Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Medical Physics, 2015, 42, 2054-2063.	1.6	38
101	Automatic abstraction of imaging observations with their characteristics from mammography reports. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, e81-e92.	2.2	28
102	3D Markup of Radiological Images in ePAD, a Web-Based Image Annotation Tool. , 2015, , .		6
103	Semantic Retrieval of Radiological Images withÂRelevance Feedback. Lecture Notes in Computer Science, 2015, , 11-25.	1.0	1
104	Ontology-based Image Navigation: Exploring 3.0-T MR Neurography of the Brachial Plexus Using AIM and RadLex. Radiographics, 2015, 35, 142-151.	1.4	9
105	Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images. Journal of Digital Imaging, 2015, 28, 346-361.	1.6	14
106	Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. Journal of Neuroradiology, 2015, 42, 212-221.	0.6	109
107	Content-based image retrieval in radiology: analysis of variability in human perception of similarity. Journal of Medical Imaging, 2015, 2, 025501.	0.8	12
108	Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas–Renal Cell Carcinoma (TCGA–RCC) Imaging Research Group. Abdominal Imaging, 2015, 40, 1684-1692.	2.0	84

#	Article	IF	CITATIONS
109	Automated Classification of Usual Interstitial Pneumonia Using Regional Volumetric Texture Analysis in High-Resolution Computed Tomography. Investigative Radiology, 2015, 50, 261-267.	3.5	78
110	Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine, 2015, 7, 303ra138.	5.8	227
111	Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro-Oncology, 2015, 17, 1525-1537.	0.6	75
112	Automatic Classification of Cancer Tumors Using Image Annotations and Ontologies. , 2015, , .		1
113	A semantic framework for the retrieval of similar radiological images based on medical annotations. , 2014, , .		1
114	Letter to Cancer Center Directors: Progress in Quantitative Imaging As a Means to Predict and/or Measure Tumor Response in Cancer Therapy Trials. Journal of Clinical Oncology, 2014, 32, 2115-2116.	0.8	16
115	Quantitative SD-OCT Imaging Biomarkers as Indicators of Age-Related Macular Degeneration Progression. , 2014, 55, 7093.		118
116	Biomedical Imaging Informatics. , 2014, , 285-327.		10
117	Neuroanatomical domain of the foundational model of anatomy ontology. Journal of Biomedical Semantics, 2014, 5, 1.	0.9	50
118	A FALSE COLOR FUSION STRATEGY FOR DRUSEN AND GEOGRAPHIC ATROPHY VISUALIZATION IN OPTICAL COHERENCE TOMOGRAPHY IMAGES. Retina, 2014, 34, 2346-2358.	1.0	11
119	A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. Journal of Biomedical Informatics, 2014, 49, 227-244.	2.5	33
120	Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Medical Physics, 2014, 41, 052303.	1.6	23
121	Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint. Computers in Biology and Medicine, 2014, 54, 116-128.	3.9	45
122	On combining image-based and ontological semantic dissimilarities for medical image retrieval applications. Medical Image Analysis, 2014, 18, 1082-1100.	7.0	40
123	Automated Tracking of Quantitative Assessments of Tumor Burden in Clinical Trials. Translational Oncology, 2014, 7, 23-35.	1.7	48
124	Errors in Quantitative Image Analysis due to Platform-Dependent Image Scaling. Translational Oncology, 2014, 7, 65-71.	1.7	51
125	Developing a Comprehensive Database Management System for Organization and Evaluation of Mammography Datasets. Cancer Informatics, 2014, 13s3, CIN.S14031.	0.9	10
126	AN IMPROVED OPTICAL COHERENCE TOMOGRAPHY–DERIVED FUNDUS PROJECTION IMAGE FOR DRUSEN VISUALIZATION. Retina, 2014, 34, 996-1005.	1.0	9

#	Article	IF	CITATIONS
127	Modeling Perceptual Similarity Measures in CT Images of Focal Liver Lesions. Journal of Digital Imaging, 2013, 26, 714-720.	1.6	7
128	Quantitative Imaging Biomarker Ontology (QIBO) for Knowledge Representation of Biomedical Imaging Biomarkers. Journal of Digital Imaging, 2013, 26, 630-641.	1.6	12
129	Imaging Informatics. Academic Radiology, 2013, 20, 1195-1212.	1.3	26
130	Quantitative Evaluation of Drusen on Photographs. Ophthalmology, 2013, 120, 644-644.e2.	2.5	5
131	Snake model-based lymphoma segmentation for sequential CT images. Computer Methods and Programs in Biomedicine, 2013, 111, 366-375.	2.6	12
132	Automated drusen segmentation and quantification in SD-OCT images. Medical Image Analysis, 2013, 17, 1058-1072.	7.0	106
133	A Picture Is Worth A Thousand Words. Academic Radiology, 2013, 20, 1577-1583.	1.3	25
134	Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 1059-1066.	2.2	60
135	Semi-automatic geographic atrophy segmentation for SD-OCT images. Biomedical Optics Express, 2013, 4, 2729.	1.5	51
136	MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set. Radiology, 2013, 267, 560-569.	3.6	362
137	Informatics in Radiology: An Open-Source and Open-Access Cancer Biomedical Informatics Grid Annotation and Image Markup Template Builder. Radiographics, 2012, 32, 1223-1232.	1.4	14
138	Informatics in Radiology: Improving Clinical Work Flow through an AIM Database: A Sample Web-based Lesion Tracking Application. Radiographics, 2012, 32, 1543-1552.	1.4	17
139	The Role of Informatics in Health Care Reform. Academic Radiology, 2012, 19, 1094-1099.	1.3	9
140	Using the Semantic Web and Web Apps to Connect Radiologists and Oncologists. , 2012, , .		3
141	Prognostic PET 18F-FDG Uptake Imaging Features Are Associated with Major Oncogenomic Alterations in Patients with Resected Non–Small Cell Lung Cancer. Cancer Research, 2012, 72, 3725-3734.	0.4	111
142	Non–Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data—Methods and Preliminary Results. Radiology, 2012, 264, 387-396.	3.6	384
143	Informatics methods to enable sharing of quantitative imaging research data. Magnetic Resonance Imaging, 2012, 30, 1249-1256.	1.0	17
144	Integration of Imaging Signs into RadLex. Journal of Digital Imaging, 2012, 25, 50-55.	1.6	19

#	Article	IF	CITATIONS
145	On the Feasibility of Predicting Radiological Observations from Computational Imaging Features of Liver Lesions in CT Scans. , 2011, , .		9
146	Finding the Meaning in Images: Annotation and Image Markup. Philosophy, Psychiatry and Psychology, 2011, 18, 311-318.	0.2	9
147	Current and Future Trends in Imaging Informatics for Oncology. Cancer Journal (Sudbury, Mass), 2011, 17, 203-210.	1.0	15
148	Evaluation of Negation and Uncertainty Detection and its Impact on Precision and Recall in Search. Journal of Digital Imaging, 2011, 24, 234-242.	1.6	14
149	Ontology-Assisted Analysis of Web Queries to Determine the Knowledge Radiologists Seek. Journal of Digital Imaging, 2011, 24, 160-164.	1.6	19
150	Content-Based Image Retrieval in Radiology: Current Status and Future Directions. Journal of Digital Imaging, 2011, 24, 208-222.	1.6	321
151	A Bayesian Network for Differentiating Benign From Malignant Thyroid Nodules Using Sonographic and Demographic Features. American Journal of Roentgenology, 2011, 196, W598-W605.	1.0	34
152	Informatics in Radiology: Measuring and Improving Quality in Radiology: Meeting the Challenge with Informatics. Radiographics, 2011, 31, 1511-1527.	1.4	38
153	Informatics in Radiology: An Information Model of the DICOM Standard. Radiographics, 2011, 31, 295-304.	1.4	25
154	Automated temporal tracking and segmentation of lymphoma on serial CT examinations. Medical Physics, 2011, 38, 5879-5886.	1.6	15
155	A Scalable Reference Standard of Visual Similarity for a Content-Based Image Retrieval System. , 2011, , .		5
156	Computational approaches to assist in the evaluation of cancer treatment response. Imaging in Medicine, 2011, 3, 233-246.	0.0	3
157	The caBlGâ,,¢ Annotation and Image Markup Project. Journal of Digital Imaging, 2010, 23, 217-225.	1.6	94
158	Application of neuroanatomical ontologies for neuroimaging data annotation. Frontiers in Neuroinformatics, 2010, 4, .	1.3	25
159	Informatics in Radiology: RADTF: A Semantic Search–enabled, Natural Language Processor–generated Radiology Teaching File. Radiographics, 2010, 30, 2039-2048.	1.4	30
160	Automated Retrieval of CT Images of Liver Lesions on the Basis of Image Similarity: Method and Preliminary Results. Radiology, 2010, 256, 243-252.	3.6	92
161	Annotation and Image Markup: Accessing and Interoperating with the Semantic Content in Medical Imaging. IEEE Intelligent Systems, 2009, 24, 57-65.	4.0	32
162	The Annotation and Image Mark-up Project. Radiology, 2009, 253, 590-592.	3.6	56

#	Article	IF	CITATIONS
163	Toward Best Practices in Radiology Reporting. Radiology, 2009, 252, 852-856.	3.6	186
164	Automated Semantic Indexing of Figure Captions to Improve Radiology Image Retrieval. Journal of the American Medical Informatics Association: JAMIA, 2009, 16, 380-386.	2.2	26
165	Informatics Methods to Enable Patient-centered Radiology. Academic Radiology, 2009, 16, 524-534.	1.3	14
166	The IR Radlex Project: An Interventional Radiology Lexicon—A Collaborative Project of the Radiological Society of North America and the Society of Interventional Radiology. Journal of Vascular and Interventional Radiology, 2009, 20, 433-435.	0.2	23
167	The ACR BI-RADS® Experience: Learning From History. Journal of the American College of Radiology, 2009, 6, 851-860.	0.9	257
168	Semantic reasoning with image annotations for tumor assessment. AMIA Annual Symposium proceedings, 2009, 2009, 359-63.	0.2	7
169	A Controlled Vocabulary to Represent Sonographic Features of the Thyroid and its application in a Bayesian Network to Predict Thyroid Nodule Malignancy. Summit on Translational Bioinformatics, 2009, 2009, 68-72.	0.7	1
170	A semantic image annotation model to enable integrative translational research. Summit on Translational Bioinformatics, 2009, 2009, 106-10.	0.7	7
171	Creating and Curating a Terminology for Radiology: Ontology Modeling and Analysis. Journal of Digital Imaging, 2008, 21, 355-362.	1.6	118
172	Translating the Foundational Model of Anatomy into OWL. Web Semantics, 2008, 6, 133-136.	2.2	31
173	MScanner: a classifier for retrieving Medline citations. BMC Bioinformatics, 2008, 9, 108.	1.2	54
174	A prototype symbolic model of canonical functional neuroanatomy of the motor system. Journal of Biomedical Informatics, 2008, 41, 251-263.	2.5	8
175	A Data Warehouse for Integrating Radiologic and Pathologic Data. Journal of the American College of Radiology, 2008, 5, 210-217.	0.9	47
176	Tool support to enable evaluation of the clinical response to treatment. AMIA Annual Symposium proceedings, 2008, , 399-403.	0.2	17
177	iPad: Semantic annotation and markup of radiological images. AMIA Annual Symposium proceedings, 2008, , 626-30.	0.2	32
178	FMA-RadLex: An application ontology of radiological anatomy derived from the foundational model of anatomy reference ontology. AMIA Annual Symposium proceedings, 2008, , 465-9.	0.2	20
179	A Bayesian classifier for differentiating benign versus malignant thyroid nodules using sonographic features. AMIA Annual Symposium proceedings, 2008, , 419-23.	0.2	6
180	Use of Microcalcification Descriptors in BI-RADS 4th Edition to Stratify Risk of Malignancy. Radiology, 2007, 242, 388-395.	3.6	168

#	Article	IF	CITATIONS
181	Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 2007, 9, 75-90.	3.2	218
182	Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics, 2007, 8, 296.	1.2	26
183	Protégé: A Tool for Managing and Using Terminology in Radiology Applications. Journal of Digital Imaging, 2007, 20, 34-46.	1.6	71
184	LesionViewer: a tool for tracking cancer lesions over time. AMIA Annual Symposium proceedings, 2007, , 443-7.	0.2	5
185	An Ontology for PACS Integration. Journal of Digital Imaging, 2006, 19, 316-327.	1.6	24
186	Using ontologies linked with geometric models to reason about penetrating injuries. Artificial Intelligence in Medicine, 2006, 37, 167-176.	3.8	30
187	Bayesian Network to Predict Breast Cancer Risk of Mammographic Microcalcifications and Reduce Number of Benign Biopsy Results: Initial Experience. Radiology, 2006, 240, 666-673.	3.6	91
188	National Center for Biomedical Ontology: Advancing Biomedicine through Structured Organization of Scientific Knowledge. OMICS A Journal of Integrative Biology, 2006, 10, 185-198.	1.0	149
189	Ontology-based annotation and query of tissue microarray data. AMIA Annual Symposium proceedings, 2006, , 709-13.	0.2	19
190	Use of description logic classification to reason about consequences of penetrating injuries. AMIA Annual Symposium proceedings, 2005, , 649-53.	0.2	5
191	Challenges in converting frame-based ontology into OWL: the Foundational Model of Anatomy case-study. AMIA Annual Symposium proceedings, 2005, , 181-5.	0.2	11
192	Using an ontology of human anatomy to inform reasoning with geometric models. Studies in Health Technology and Informatics, 2005, 111, 429-35.	0.2	7
193	A Probabilistic Expert System That Provides Automated Mammographic–Histologic Correlation:Initial Experience. American Journal of Roentgenology, 2004, 182, 481-488.	1.0	24
194	A Statistical Approach to Scanning the Biomedical Literature for Pharmacogenetics Knowledge. Journal of the American Medical Informatics Association: JAMIA, 2004, 12, 121-129.	2.2	40
195	Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography. Studies in Health Technology and Informatics, 2004, 107, 13-7.	0.2	11
196	A resource to acquire and summarize pharmacogenetics knowledge in the literature. Studies in Health Technology and Informatics, 2004, 107, 793-7.	0.2	2
197	PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic Acids Research, 2002, 30, 163-165.	6.5	373
198	Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2002, , 88-99.	0.7	4

#	Article	IF	CITATIONS
199	Efficacy and safety of mangafodipir trisodium (MnDPDP) injection for hepatic MRI in adults: Results of the U.S. Multicenter phase III clinical trials. Efficacy of early imaging. Journal of Magnetic Resonance Imaging, 2000, 12, 689-701.	1.9	69
200	Magnetic Resonance Imaging in Patients with Central Nervous System Pathology. Investigative Radiology, 2000, 35, 412-419.	3.5	38
201	A multicenter, randomized, double-blind study to evaluate the safety, tolerability, and efficacy of OptiMARK (gadoversetamide injection) compared with Magnevist (gadopentetate dimeglumine) in patients with liver pathology: Results of a phase III clinical trial. Journal of Magnetic Resonance Imaging, 1999, 9, 240-250.	1.9	43
202	A multisite phase III study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. Journal of Magnetic Resonance Imaging, 1999, 10, 15-24.	1.9	53
203	Blood pool and liver enhancement in CT with liposomal lodixanol: Comparison with lohexol. Academic Radiology, 1999, 6, 176-183.	1.3	35
204	Interstitial MR and CT lymphography with Gd-DTPA-co-α, ω-diaminoPEG(1450) and Gd-DTPA-co-1,6-diaminohexane polymers: Preliminary experience. Academic Radiology, 1999, 6, 112-118.	1.3	13
205	Polymeric Gadolinium Chelate Magnetic Resonance Imaging Contrast Agents:Â Design, Synthesis, and Properties. Bioconjugate Chemistry, 1999, 10, 361-370.	1.8	61
206	A multicenter clinical trial of gadolite oral suspension as a contrast agent for MRI. Journal of Magnetic Resonance Imaging, 1997, 7, 865-872.	1.9	23
207	Dynamics of tumor imaging with Gd-DTPA—polyethylene glycol polymers: Dependence on molecular weight. Journal of Magnetic Resonance Imaging, 1994, 4, 467-472.	1.9	90
208	Quantisation of Saturation Effects versus Dose in Three-Dimensional Time-of-Flight Magnetic Resonance Angiography with Blood-Pool Contrast Agents. Investigative Radiology, 1994, 29, S65-S68.	3.5	7
209	Nanoparticulate Contrast Media Blood-Pool and Liver-Spleen Imaging. Investigative Radiology, 1994, 29, S280-S283.	3.5	8
210	Liquid oral magnetic particles as a gastrointestinal contrast agent for MR imaging: Efficacy in vivo. Journal of Magnetic Resonance Imaging, 1993, 3, 113-118.	1.9	18
211	Formulation of radiographically detectable gastrointestinal contrast agents for magnetic resonance imaging: Effects of a barium sulfate additive on MR contrast agent effectiveness. Magnetic Resonance in Medicine, 1992, 23, 154-165.	1.9	24
212	Intraluminal contrast enhancement and MR visualization of the bowel wall: Efficacy of PFOB. Journal of Magnetic Resonance Imaging, 1991, 1, 371-380.	1.9	19
213	Methods for the systematic investigation of gastrointestinal contrast media for MRI: Evaluation of intestinal distribution by radiographic monitoring. Magnetic Resonance Imaging, 1991, 9, 285-293.	1.0	8
214	Detection of hepatic malignancies using Mn-DPDP (manganese dipyridoxal diphosphate) hepatobiliary MRI contrast agent. Magnetic Resonance Imaging, 1990, 8, 267-276.	1.0	34
215	Translating the Foundational Model of Anatomy into OWL. SSRN Electronic Journal, 0, , .	0.4	4