
Hans-Peter Gerber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10854699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Highly Optimized Antibody–Drug Conjugates against CD33 and CD123 for Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 622-631.	7.0	11
2	NOTCH3-targeted antibody drug conjugates regress tumors by inducing apoptosis in receptor cells and through transendocytosis into ligand cells. Cell Reports Medicine, 2021, 2, 100279.	6.5	7
3	PF-06804103, A Site-specific Anti-HER2 Antibody–Drug Conjugate for the Treatment of HER2-expressing Breast, Gastric, and Lung Cancers. Molecular Cancer Therapeutics, 2020, 19, 2068-2078.	4.1	32
4	Intracellular targets as source for cleaner targets for the treatment of solid tumors. Biochemical Pharmacology, 2019, 168, 275-284.	4.4	8
5	Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1). Molecular Cancer Therapeutics, 2018, 17, 243-253.	4.1	117
6	A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunology, Immunotherapy, 2018, 67, 247-259.	4.2	29
7	Calicheamicin Antibody-Drug Conjugates for Liquid and Solid Tumor Indications. Milestones in Drug Therapy, 2017, , 69-84.	0.1	2
8	Liver Microvascular Injury and Thrombocytopenia of Antibody–Calicheamicin Conjugates in Cynomolgus Monkeys—Mechanism and Monitoring. Clinical Cancer Research, 2017, 23, 1760-1770.	7.0	47
9	Detecting expression of 5T4 in CTCs and tumor samples from NSCLC patients. PLoS ONE, 2017, 12, e0179561.	2.5	9
10	Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer. Antibodies, 2016, 5, 6.	2.5	68
11	Next-Generation Antibody-Drug Conjugates (ADCs) for Cancer Therapy. ACS Medicinal Chemistry Letters, 2016, 7, 972-973.	2.8	20
12	Mechanisms of Resistance to Antibody–Drug Conjugates. Molecular Cancer Therapeutics, 2016, 15, 2825-2834.	4.1	119
13	Combining antibody–drug conjugates and immune-mediated cancer therapy: What to expect?. Biochemical Pharmacology, 2016, 102, 1-6.	4.4	119
14	Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions. Clinical Cancer Research, 2015, 21, 4165-4173.	7.0	78
15	Tumor Cells Chronically Treated with a Trastuzumab–Maytansinoid Antibody–Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments. Molecular Cancer Therapeutics, 2015, 14, 952-963.	4.1	158
16	Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Molecular Immunology, 2015, 67, 107-116.	2.2	129
17	A general approach to site-specific antibody drug conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1766-1771.	7.1	275
18	Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochemical Pharmacology, 2014, 91, 135-143.	4.4	153

HANS-PETER GERBER

#	Article	IF	CITATIONS
19	On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40, 557-571.	1.8	67
20	The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Natural Product Reports, 2013, 30, 625.	10.3	93
21	Long-term Tumor Regression Induced by an Antibody–Drug Conjugate That Targets 5T4, an Oncofetal Antigen Expressed on Tumor-Initiating Cells. Molecular Cancer Therapeutics, 2013, 12, 38-47.	4.1	73
22	Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function. Cell, 2012, 151, 384-399.	28.9	144
23	Advances in bispecific biotherapeutics for the treatment of cancer. Biochemical Pharmacology, 2012, 84, 1105-1112.	4.4	72
24	Investigational antibody drug conjugates for solid tumors. Expert Opinion on Investigational Drugs, 2011, 20, 1131-1149.	4.1	85
25	Emerging immunotherapies targeting CD30 in Hodgkin's lymphoma. Biochemical Pharmacology, 2010, 79, 1544-1552.	4.4	30
26	Targeting Inflammatory Cells to Improve Anti-VEGF Therapies in Oncology. Recent Results in Cancer Research, 2010, 180, 185-200.	1.8	14
27	Anti-leukemic activity of Lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs, 2009, 1, 481-490.	5.2	43
28	Antibody drug-conjugates targeting the tumor vasculature. MAbs, 2009, 1, 247-253.	5.2	64
29	Role of Vascular Targeting Agents in the Treatment of Solid Tumors Current and Future Developments. , 2009, , .		0
30	Combination of the anti D30â€auristatin‣ antibodyâ€drug conjugate (SGNâ€35) with chemotherapy impro antitumour activity in Hodgkin lymphoma. British Journal of Haematology, 2008, 142, 69-73.	ves 2.5	114
31	Potent Anticarcinoma Activity of the Humanized Anti-CD70 Antibody h1F6 Conjugated to the Tubulin Inhibitor Auristatin via an Uncleavable Linker. Clinical Cancer Research, 2008, 14, 6171-6180.	7.0	103
32	VEGF Inhibition and Renal Thrombotic Microangiopathy. New England Journal of Medicine, 2008, 358, 1129-1136.	27.0	1,348
33	Anti-CD30 diabody-drug conjugates with potent antitumor activity. Molecular Cancer Therapeutics, 2008, 7, 2486-2497.	4.1	109
34	Vascular Endothelial Growth Factor Antibodies for Anti-Angiogenic Therapy. , 2008, , 377-393.		2
35	Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3478-3483.	7.1	107
36	Arterial Thromboembolic Events in Patients with Metastatic Carcinoma Treated with Chemotherapy and Bevacizumab. Journal of the National Cancer Institute, 2007, 99, 1232-1239.	6.3	883

HANS-PETER GERBER

#	Article	IF	CITATIONS
37	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.5	157
38	Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood, 2007, 110, 4370-4372.	1.4	124
39	Epithelial–vascular cross talk mediated by VEGF-A and HGF signaling directs primary septae formation during distal lung morphogenesis. Developmental Biology, 2007, 308, 44-53.	2.0	142
40	Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 2007, 25, 911-920.	17.5	795
41	The Vascular Basement Membrane: A Niche for Insulin Gene Expression and Î ² Cell Proliferation. Developmental Cell, 2006, 10, 397-405.	7.0	463
42	Redundant roles of VEGF-B and PIGF during selective VEGF-A blockade in mice. Blood, 2006, 107, 550-557.	1.4	37
43	Corneal avascularity is due to soluble VEGF receptor-1. Nature, 2006, 443, 993-997.	27.8	605
44	Cross-species Vascular Endothelial Growth Factor (VEGF)-blocking Antibodies Completely Inhibit the Growth of Human Tumor Xenografts and Measure the Contribution of Stromal VEGF. Journal of Biological Chemistry, 2006, 281, 951-961.	3.4	315
45	Tumor-Driven Paracrine Platelet-Derived Growth Factor Receptor α Signaling Is a Key Determinant of Stromal Cell Recruitment in a Model of Human Lung Carcinoma. Clinical Cancer Research, 2006, 12, 2676-2688.	7.0	112
46	Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development (Cambridge), 2005, 132, 941-952.	2.5	235
47	Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Research, 2005, 65, 671-80.	0.9	427
48	Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiological Genomics, 2004, 18, 63-69.	2.3	163
49	Down syndrome critical region protein 1 (DSCR1), a novel VEGF target gene that regulates expression of inflammatory markers on activated endothelial cells. Blood, 2004, 104, 149-158.	1.4	151
50	Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews Drug Discovery, 2004, 3, 391-400.	46.4	2,211
51	VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO Journal, 2004, 23, 2800-2810.	7.8	289
52	Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 2004, 6, 485-495.	16.8	494
53	The role of VEGF in normal and neoplastic hematopoiesis. Journal of Molecular Medicine, 2003, 81, 20-31.	3.9	173
54	Role of VEGF-A in Vascularization of Pancreatic Islets. Current Biology, 2003, 13, 1070-1074.	3.9	351

HANS-PETER GERBER

#	Article	IF	CITATIONS
55	Targeting VEGF ligands and receptors in cancer. Targets, 2003, 2, 48-57.	0.3	11
56	The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell, 2003, 4, 133-146.	16.8	375
57	The biology of VEGF and its receptors. Nature Medicine, 2003, 9, 669-676.	30.7	8,501
58	HIF-1α Is Essential for Myeloid Cell-Mediated Inflammation. Cell, 2003, 112, 645-657.	28.9	1,862
59	Angiogenesis-Independent Endothelial Protection of Liver: Role of VEGFR-1. Science, 2003, 299, 890-893.	12.6	612
60	Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. Journal of Clinical Investigation, 2003, 111, 707-716.	8.2	1,100
61	VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell, 2002, 1, 193-202.	16.8	372
62	VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 2002, 417, 954-958.	27.8	647
63	Dobutamine stress cine-MRI of cardiac function in the hearts of adult cardiomyocyte-specific VEGF knockout mice. Journal of Magnetic Resonance Imaging, 2001, 14, 374-382.	3.4	31
64	The Role of Vascular Endothelial Growth Factor in Angiogenesis. Acta Haematologica, 2001, 106, 148-156.	1.4	385
65	Angiogenesis and Bone Growth. Trends in Cardiovascular Medicine, 2000, 10, 223-228.	4.9	321
66	VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 1999, 5, 623-628.	30.7	1,853
67	Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 1998, 4, 336-340.	30.7	581
68	Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway. Journal of Biological Chemistry, 1998, 273, 30336-30343.	3.4	1,736
69	Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 13313-13316.	3.4	834
70	Homologous Up-regulation of KDR/Flk-1 Receptor Expression by Vascular Endothelial Growth Factor in Vitro. Journal of Biological Chemistry, 1998, 273, 29979-29985.	3.4	181
71	Tumor Necrosis Factor-α Regulates Expression of Vascular Endothelial Growth Factor Receptor-2 and of Its Co-receptor Neuropilin-1 in Human Vascular Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 22128-22135.	3.4	232
72	Differential Transcriptional Regulation of the Two Vascular Endothelial Growth Factor Receptor Genes. Journal of Biological Chemistry, 1997, 272, 23659-23667.	3.4	667

#	Article	IF	CITATIONS
73	RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature, 1995, 374, 660-662.	27.8	152
74	Basal components of the transcription apparatus (RNA polymerase II, TATA -binding protein) contain activation domains: Is the repetitive c-terminal domain (CTD) of RNA polymerase II a ?Portable Enhance Domain??. Molecular Reproduction and Development, 1994, 39, 215-225.	2.0	20
75	Transcriptional Activation Modulated by Homopolymeric Glutamine and Proline Stretches. Science, 1994, 263, 808-811.	12.6	613
76	C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Nucleic Acids Research, 1993, 21, 5609-5615.	14.5	35
77	In vitrotranscription complementation assay with miniextracts of transiently transfected COS-1 cells. Nucleic Acids Research, 1992, 20, 5855-5856.	14.5	11