
S L Semiatin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10850815/publications.pdf Version: 2024-02-01

SI SEMIATIN

#	Article	IF	CITATIONS
1	The Constant-Stress, Constant-Heating-Rate Test: A Novel Method for Characterizing Transient Mechanical Behavior of Metallic Materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 394-406.	1.1	3
2	The Application of Differential Scanning Calorimetry to Investigate Precipitation Behavior in Nickel-Base Superalloys Under Continuous Cooling and Heating Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3706-3726.	1,1	4
3	Plastic Flow During Hot Working of Ti-7Al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4695-4710.	1.1	5
4	Transient behaviour of torque and process efficiency during inertia friction welding. Science and Technology of Welding and Joining, 2019, 24, 136-147.	1,5	7
5	An Investigation of Tertiary γ′ Precipitation in a Powder-Metallurgy, γ-γ′ Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5281-5296.	1.1	7
6	High-Temperature Static Coarsening of Gamma-Prime Precipitates in NiAlCr-X Single Crystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2289-2301.	1,1	7
7	Dynamic transformation of Ti–6Al–4V during torsion in the two-phase region. Journal of Materials Science, 2018, 53, 9305-9315.	1.7	31
8	Opposing and Driving Forces Associated with the Dynamic Transformation of Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1450-1454.	1.1	27
9	The Effect of Cooling Rate on High-Temperature Precipitation in a Powder-Metallurgy, Gamma/Gamma-Prime Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6265-6276.	1.1	16
10	A Comparison of the Inertia Friction Welding Behavior of Similar and Dissimilar Ni-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5428-5444.	1,1	7
11	A Comparison of the Plastic-Flow Response of a Powder-Metallurgy Nickel-Base Superalloy Under Nominally-Isothermal and Transient-Heating Hot-Working Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1864-1879.	1.1	6
12	Efficiency of the Inertia Friction Welding Process and Its Dependence on Process Parameters. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3328-3342.	1.1	11
13	Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3981-4000.	1.1	22
14	Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6121-6137.	1.1	8
15	A comparison of the precipitation behavior in PM γ-γ′ nickel-base superalloys. Materials at High Temperatures, 2016, 33, 301-309.	0.5	11
16	Precipitation in powder-metallurgy, nickel-base superalloys: review of modeling approach and formulation of engineering methods to determine input data. Integrating Materials and Manufacturing Innovation, 2016, 5, 41-60.	1.2	6
17	Site-Dependent Tension Properties of Inertia Friction-Welded Joints Made From Dissimilar Ni-based Superalloys. Journal of Materials Engineering and Performance, 2015, 24, 1173-1184.	1.2	13
18	An Investigation of High-Temperature Precipitation in Powder-Metallurgy, Gamma/Gamma-Prime Nickel-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1715-1730.	1.1	46

S L SEMIATIN

#	Article	IF	CITATIONS
19	Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth. , 2015, , .		0
20	Alloying-Element Loss During High-Temperature Processing of a Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 962-979.	1.1	7
21	Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment. Nano Letters, 2014, 14, 4997-5003.	4.5	19
22	Plastic Flow and Microstructure Evolution during Thermomechanical Processing of a PM Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2778-2798.	1.1	54
23	Thermomagnetic analysis of FeCoCr <i>x</i> Ni alloys: Magnetic entropy of high-entropy alloys. Journal of Applied Physics, 2013, 113, .	1.1	88
24	Absence of long-range chemical ordering in equimolar FeCoCrNi. Applied Physics Letters, 2012, 100, .	1.5	176
25	Magnetic and vibrational properties of high-entropy alloys. Journal of Applied Physics, 2011, 109, .	1.1	223
26	Alpha/Beta Heat Treatment of a Titanium Alloy with a Nonuniform Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 910-921.	1.1	77
27	Dynamic-coarsening behavior of an $\hat{l}\pm/\hat{l}^2$ titanium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1125-1136.	1.1	88
28	Effect of the size distribution of alpha particles on microstructure evolution during heat treatment of an alpha/beta titanium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 259-262.	1.1	14
29	Self-consistent modeling of the flow behavior of wrought alpha/beta titanium alloys under isothermal and nonisothermal hot-working conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2719-2727.	1.1	113
30	The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test. Journal of Materials Engineering and Performance, 2001, 10, 710-717.	1.2	281
31	The thermomechanical processing of alpha/beta titanium alloys. Jom, 1997, 49, 33-39.	0.9	151
32	An experimental and theoretical investigation of the rapid consolidation of continuously reinforced, metal-matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 1719-1730.	1.1	2
33	Fiber fracture during processing of continuous fiber, metal-matrix composites using the foil/fiber/foil technique. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1129-1139.	1.1	5
34	Effect of process parameter variability on HIP consolidation of continuous-fiber, metal-matrix composites made from foil/fiber/foil layups. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1906-1908.	1.1	2
35	Modeling of the consolidation of continuous- fiber metal matrix composites via foil- fiber- foil techniques. Journal of Materials Engineering and Performance, 1993, 2, 333-340.	1.2	29
36	Consolidation of Continuous Fiber, Intermetallic-Matrix Composites. Materials Research Society Symposia Proceedings, 1992, 273, 351.	0.1	5

#	Article	IF	CITATIONS
37	Induction tempering of steel: Part I. Development of an effective tempering parameter. Journal of Heat Treating, 1985, 4, 39-46.	0.1	16
38	Induction tempering of steel: Part II. Effect of process variables. Journal of Heat Treating, 1985, 4, 47-55.	0.1	4
39	The Forging of Metals. Scientific American, 1981, 245, 98-106.	1.0	8