
Cheng Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10850560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial. EClinicalMedicine, 2022, 48, 101477.	7.1	13
2	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	6.4	12
3	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15
4	Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Scientific Reports, 2020, 10, 3032.	3.3	36
5	Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,	3.4	21
6	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
7	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	2.5	41
8	Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infectious Diseases, 2018, 4, 788-796.	3.8	65
9	Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathogens, 2018, 14, e1007395.	4.7	37
10	Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. Immunity, 2018, 49, 301-311.e5.	14.3	110
11	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
12	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
13	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160
14	Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.	3.4	58
15	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	3.4	125
16	Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development. Vaccine, 2015, 33, 7344-7351.	3.8	16
17	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	3.4	100
18	Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling. Journal of Clinical Investigation, 2015, 125, 1129-1146.	8.2	97

CHENG CHENG

#	Article	IF	CITATIONS
19	Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nature Medicine, 2014, 20, 1126-1129.	30.7	311
20	Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization. Journal of Immunology, 2013, 190, 2720-2735.	0.8	99
21	Gene-Based Vaccination with a Mismatched Envelope Protects against Simian Immunodeficiency Virus Infection in Nonhuman Primates. Journal of Virology, 2012, 86, 7760-7770.	3.4	31
22	Decreased Pre-existing Ad5 Capsid and Ad35 Neutralizing Antibodies Increase HIV-1 Infection Risk in the Step Trial Independent of Vaccination. PLoS ONE, 2012, 7, e33969.	2.5	22
23	Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization. Journal of Virology, 2010, 84, 630-638.	3.4	57
24	Delivery of Human Immunodeficiency Virus Vaccine Vectors to the Intestine Induces Enhanced Mucosal Cellular Immunity. Journal of Virology, 2009, 83, 7166-7175.	3.4	23
25	Enhanced Induction of Intestinal Cellular Immunity by Oral Priming with Enteric Adenovirus 41 Vectors. Journal of Virology, 2009, 83, 748-756.	3.4	25
26	Mechanism of Ad5 Vaccine Immunity and Toxicity: Fiber Shaft Targeting of Dendritic Cells. PLoS Pathogens, 2007, 3, e25.	4.7	69
27	Efficient Production of Taka-amylase A byTrichoderma viride. Agricultural and Biological Chemistry, 1991, 55, 1817-1822.	0.3	1
28	Transformation of Trichoderma viride using the Neurospora crassa pyr4 gene and its use in the expression of a Taka-amylase A gene from Aspergillus oryzae. Current Genetics, 1990, 18, 453-456.	1.7	17