John Rogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10849154/publications.pdf

Version: 2024-02-01

81	4,029	31 h-index	61
papers	citations		g-index
82	82	82	5102
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 2004, 61, 301-325.	2.3	549
2	A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 2002, 80, 143-156.	4.6	306
3	Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sensing of Environment, 2012, 117, 72-82.	4.6	218
4	Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sensing of Environment, 2008, 112, 2272-2283.	4.6	210
5	Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sensing, 2013, 5, 4799-4818.	1.8	194
6	Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models. Photogrammetric Engineering and Remote Sensing, 2003, 69, 1011-1020.	0.3	175
7	Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data. Photogrammetric Engineering and Remote Sensing, 2003, 69, 793-804.	0.3	168
8	An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA. GIScience and Remote Sensing, 2012, 49, 623-643.	2.4	160
9	Resource extraction and infrastructure threaten forest cover and community rights. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13164-13173.	3.3	122
10	Mapping Wildfire Burn Severity in Southern California Forests and Shrublands Using Enhanced Thematic Mapper Imagery. Geocarto International, 2001, 16, 91-106.	1.7	94
11	Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Journal of Geophysical Research, 2011, 116, .	3.3	78
12	Identifying Trends in Land Use/Land Cover Changes in the Context of Post-Socialist Transformation in Central Europe: A Case Study of the Greater Olomouc Region, Czech Republic. GIScience and Remote Sensing, 2009, 46, 54-76.	2.4	70
13	Effects of urban tree canopy loss on land surface temperature magnitude and timing. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128, 338-353.	4.9	66
14	InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophysical Research Letters, 2014, 41, 3906-3913.	1.5	64
15	Extractive industries, livelihoods and natural resource competition: Mapping overlapping claims in Peru and Ghana. Applied Geography, 2014, 54, 250-261.	1.7	62
16	The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Applied Geography, 2013, 45, 49-57.	1.7	60
17	A near-real-time approach for monitoring forest disturbance using Landsat time series: stochastic continuous change detection. Remote Sensing of Environment, 2021, 252, 112167.	4.6	54
18	Accounting for Training Data Error in Machine Learning Applied to Earth Observations. Remote Sensing, 2020, 12, 1034.	1.8	49

#	Article	IF	Citations
19	Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk. Ecological Modelling, 2008, 210, 339-350.	1.2	48
20	Mapping seasonal trends in vegetation using AVHRR-NDVI time series in the Yucat \tilde{A}_i n Peninsula, Mexico. Remote Sensing Letters, 2012, 3, 433-442.	0.6	46
21	Mapping Selective Logging in Mixed Deciduous Forest. Photogrammetric Engineering and Remote Sensing, 2008, 74, 1201-1211.	0.3	43
22	Characterizing tree canopy loss using multi-source GIS data in Central Massachusetts, USA. Remote Sensing Letters, 2013, 4, 1137-1146.	0.6	43
23	Evaluating conflict surrounding mineral extraction in Ghana: Assessing the spatial interactions of large and small-scale mining. The Extractive Industries and Society, 2016, 3, 450-463.	0.7	41
24	SequÃas en el sur de la penÃnsula de Yucatán: análisis de la variabilidad anual y estacional de la precipitación. Investigaciones Geográficas, 2012, , 19.	0.0	41
25	Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucat \tilde{A}_i n, Mexico. Remote Sensing Letters, 2011, 2, 259-267.	0.6	40
26	Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136, 134-143.	4.9	40
27	Large carbon release legacy from bark beetle outbreaks across Western United States. Global Change Biology, 2015, 21, 3087-3101.	4.2	37
28	High Mortality for Rare Species Following Hurricane Disturbance in the Southern Yucat \tilde{A}_i n. Biotropica, 2011, 43, 676-684.	0.8	36
29	Training interdisciplinary "wicked problem―solvers: applying lessons from HERO in community-based research experiences for undergraduates. Journal of Geography in Higher Education, 2015, 39, 407-419.	1.4	36
30	Social Norms, Yard Care, and the Difference between Front and Back Yard Management: Examining the Landscape Mullets Concept on Urban Residential Lands. Society and Natural Resources, 2018, 31, 1169-1188.	0.9	35
31	Characterizing the potential distribution of the invasive Asian longhorned beetle (Anoplophora) Tj ETQq1 1 0.78	4314 rgBT 1.7	Ogyerlock 10
32	Detecting subtle change from dense Landsat time series: Case studies of mountain pine beetle and spruce beetle disturbance. Remote Sensing of Environment, 2021, 263, 112560.	4.6	32
33	Urban tree survival and stewardship in a state-managed planting initiative: A case study in Holyoke, Massachusetts. Urban Forestry and Urban Greening, 2019, 43, 126382.	2.3	31
34	Geomorphic Change Analysis Using ASTER and SRTM Digital Elevation Models in Central Massachusetts, USA. GIScience and Remote Sensing, 2010, 47, 1-24.	2.4	30
35	Damage patterns after Hurricane Dean in the southern Yucat \tilde{A}_i n: Has human activity resulted in more resilient forests?. Forest Ecology and Management, 2013, 310, 812-820.	1.4	29
36	Mapping licit and illicit mining activity in the Madre de Dios region of Peru. Remote Sensing Letters, 2014, 5, 882-891.	0.6	29

#	Article	IF	CITATIONS
37	Socio-environmental Conflict, Political Settlements, and Mining Governance: A Cross-Border Comparison, El Salvador and Honduras. Latin American Perspectives, 2019, 46, 84-106.	0.5	29
38	A step-wise land-cover classification of the tropical forests of the Southern Yucat \tilde{A}_i n, Mexico. International Journal of Remote Sensing, 2011, 32, 1139-1164.	1.3	27
39	Utilizing Temporally Invariant Calibration Sites to Classify Multiple Dates and Types of Satellite Imagery. Photogrammetric Engineering and Remote Sensing, 2011, 77, 181-189.	0.3	25
40	Mapping Wildfire Burn Severity in the Arctic Tundra from Downsampled MODIS Data. Arctic, Antarctic, and Alpine Research, 2013, 45, 64-76.	0.4	25
41	Mapping forest damage in northern Nicaragua after Hurricane Felix (2007) using MODIS enhanced vegetation index data. GIScience and Remote Sensing, 2013, 50, 385-399.	2.4	25
42	Integrating GIS and Remotely Sensed Data for Mapping Forest Disturbance and Change., 2006, , 133-171.		25
43	Longâ€term change in subâ€alpine forest cover, tree line and species composition in the Swiss Alps. Journal of Vegetation Science, 2017, 28, 951-964.	1.1	24
44	Mapping Burn Severity of Mediterranean-Type Vegetation Using Satellite Multispectral Data. GIScience and Remote Sensing, 2007, 44, 1-23.	2.4	22
45	Mapping land-cover change in a Haitian watershed using a combined spectral mixture analysis and classification tree procedure. Geocarto International, 2010, 25, 85-103.	1.7	21
46	Modelling dry season deciduousness in Mexican Yucatán forest using MODIS EVI data (2000–2011). GIScience and Remote Sensing, 2013, 50, 26-49.	2.4	21
47	Monitoring geomorphic and hydrologic change at mine sites using satellite imagery: The Geita Gold Mine in Tanzania. Applied Geography, 2014, 54, 243-249.	1.7	20
48	Drought Impacts on Australian Vegetation During the Millennium Drought Measured With Multisource Spaceborne Remote Sensing. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005145.	1.3	20
49	Mapping of the Asian longhorned beetle's time to maturity and risk to invasion at contiguous United States extent. Biological Invasions, 2017, 19, 1999-2013.	1.2	18
50	Segmentation of Landsat Thematic Mapper imagery improves buffelgrass (Pennisetum ciliare) pasture mapping in the Sonoran Desert of Mexico. Applied Geography, 2012, 34, 569-575.	1.7	17
51	Priorities for governing large-scale infrastructure in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21829-21833.	3.3	16
52	Mining, risk and climate resilience in the â€~other' Pacific: Latin American lessons for the South Pacific. Asia Pacific Viewpoint, 2015, 56, 189-207.	0.8	15
53	Vulnerability and Adaptive Capacity in Response to the Asian Longhorned Beetle Infestation in Worcester, Massachusetts. Human Ecology, 2014, 42, 965-977.	0.7	14

Modeling the risk of spread and establishment for Asian longhorned beetle (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 62 Tr 1.7 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0 0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0 rgBT /Oyerlock 10 Tf 50 for Signature (<i>Anoplophora) Tj ETQq0

#	Article	IF	Citations
55	Quantifying shoreline change in Funafuti Atoll, Tuvalu using a time series of Quickbird, Worldview and Landsat data. GIScience and Remote Sensing, 2018, 55, 307-330.	2.4	13
56	Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Properties., 2003,, 279-300.		12
57	A comparison of Landsat ETM+ and high-resolution aerial orthophotos to map urban/suburban forest cover in Massachusetts, USA. Remote Sensing Letters, 2012, 3, 667-676.	0.6	12
58	Mapping land development through periods of economic bubble and bust in Massachusetts using Landsat time series data. GIScience and Remote Sensing, 2015, 52, 397-415.	2.4	11
59	Predictors of mortality for juvenile trees in a residential urban-to-rural cohort in Worcester, MA. Urban Forestry and Urban Greening, 2018, 30, 138-151.	2.3	11
60	Error Propagation in Raster Data Integration. Photogrammetric Engineering and Remote Sensing, 2012, 78, 617-624.	0.3	10
61	Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast Siberia by integrating field measurements with Landsat-5 TM and WorldView-2 satellite data. GIScience and Remote Sensing, 2015, 52, 131-157.	2.4	10
62	Land ownership impacts post-wildfire forest regeneration in Sierra Nevada mixed-conifer forests. Forest Ecology and Management, 2020, 468, 118161.	1.4	10
63	Historical Urban Tree Canopy Cover Change in Two Post-Industrial Cities. Environmental Management, 2022, 70, 16-34.	1.2	10
64	Quantifying uncertainty and confusion in land change analyses: a case study from central Mexico using MODIS data. GIScience and Remote Sensing, 2015, 52, 543-570.	2.4	8
65	Fire Data as Proxy for Anthropogenic Landscape Change in the Yucatán. Land, 2017, 6, 61.	1.2	8
66	Application of Spectral and Environmental Variables to Map the Kissimmee Prairie Ecosystem Using Classification Trees. GIScience and Remote Sensing, 2011, 48, 299-323.	2.4	7
67	Visualizing competing claims on resources: Approaches from extractive industries research. Applied Geography, 2014, 52, 55-56.	1.7	7
68	Modeling the Sociospatial Constraints on Land-Use Change: The Case of Periurban Sprawl in the Greater Boston Region. Environment and Planning B: Planning and Design, 2015, 42, 221-241.	1.7	6
69	Local variability in the timing and intensity of tropical dry forest deciduousness is explained by differences in forest stand age. GIScience and Remote Sensing, 2018, 55, 437-456.	2.4	6
70	Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data. Remote Sensing, 2018, 10, 979.	1.8	6
71	Thirty years of forest-cover change in Western Rwanda during periods of wars and environmental policy shifts. Regional Environmental Change, 2021, 21, 1.	1.4	5
72	Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data. Remote Sensing, 2016, 8, 478.	1.8	4

#	Article	IF	CITATIONS
73	Modeling the Potential Dispersal of Asian Longhorned Beetle Using Circuit Theory. Professional Geographer, 2019, 71, 580-594.	1.0	4
74	â€Tradescapes' in the forest: framing infrastructure's relation to territory, commodities, and flows. Current Opinion in Environmental Sustainability, 2021, 53, 29-36.	3.1	3
75	Using Food Flow Data to Assess Sustainability: Land Use Displacement and Regional Decoupling in Quintana Roo, Mexico. Sustainability, 2016, 8, 1145.	1.6	2
76	A Relational Theory of Risk: a Case Study of the Asian Longhorned Beetle Infestation in Worcester, MA. Journal of Risk Research, 2020, 23, 781-795.	1.4	2
77	Understanding agricultural fire dynamics in the southern Yucatán Peninsular Region using the MODIS (C6) active fire product. Remote Sensing Letters, 2021, 12, 715-726.	0.6	2
78	Measuring and categorizing the water-related downstream risks associated with mineral extraction in Honduras: How severe, and how distributed?. Applied Geography, 2019, 111, 102070.	1.7	1
79	Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US. Agricultural and Forest Meteorology, 2022, 320, 108939.	1.9	1
80	Tracking forest dynamic trends in Belize: the role of protected areas, agriculture, and fire in the South Eastern Selva Maya. Remote Sensing Letters, 2022, 13, 778-788.	0.6	1
81	Modeling Forest Species Distributions in a Human-Dominated Landscape in Northeastern, USA. International Journal of Applied Geospatial Research, 2013, 4, 39-57.	0.2	O