Thomas H Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10848573/publications.pdf

Version: 2024-02-01

126907 98798 5,161 89 33 67 citations h-index g-index papers 91 91 91 5063 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging, 2020, 13, 140-155.	5.3	930
2	Anatomic Versus Physiologic Assessment of Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1639-1653.	2.8	495
3	Cardiac PET Imaging for the Detection and Monitoring of Coronary Artery Disease and Microvascular Health. JACC: Cardiovascular Imaging, 2010, 3, 623-640.	5 . 3	338
4	Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nature Reviews Cardiology, 2018, 15, 151-166.	13.7	286
5	Coronary Circulatory Dysfunction in Insulin Resistance, Impaired Glucose Tolerance, and Type 2 Diabetes Mellitus. Circulation, 2005, 111, 2291-2298.	1.6	255
6	Relationship Between Increasing Body Weight, Insulin Resistance, Inflammation, Adipocytokine Leptin, and Coronary Circulatory Function. Journal of the American College of Cardiology, 2006, 47, 1188-1195.	2.8	215
7	Joint SNMMI–ASNC Expert Consensus Document on the Role of ¹⁸ F-FDG PET/CT in Cardiac Sarcoid Detection and Therapy Monitoring. Journal of Nuclear Medicine, 2017, 58, 1341-1353.	5.0	187
8	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Medicine, 2018, 59, 273-293.	5.0	163
9	Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. Journal of Nuclear Cardiology, 2018, 25, 269-297.	2.1	151
10	Positron Emission Tomography-Measured Abnormal Responses of Myocardial Blood Flow to Sympathetic Stimulation Are Associated With the Risk of Developing Cardiovascular Events. Journal of the American College of Cardiology, 2005, 45, 1505-1512.	2.8	145
11	Joint SNMMI–ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. Journal of Nuclear Cardiology, 2017, 24, 1741-1758.	2.1	132
12	Prognostic Value of Abnormal Vasoreactivity of Epicardial Coronary Arteries to Sympathetic Stimulation in Patients With Normal Coronary Angiograms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 495-501.	2.4	125
13	Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. European Heart Journal, 2011, 32, 1369-1378.	2.2	123
14	Improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: relation to alterations in endocannabinoids and adipocytokines. European Heart Journal, 2013, 34, 2063-2073.	2.2	90
15	Coronary vasoregulation in patients with various risk factors in response to cold pressor testing. Journal of the American College of Cardiology, 2003, 42, 814-822.	2.8	89
16	Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. European Heart Journal, 2016, 37, 1268-1283.	2.2	88
17	Chronic Inflammation and Impaired Coronary Vasoreactivity in Patients With Coronary Risk Factors. Circulation, 2004, 110, 1069-1075.	1.6	81
18	Coronary Vasomotor Control in Obesity and Morbid Obesity. JACC: Cardiovascular Imaging, 2012, 5, 805-815.	5. 3	69

#	Article	IF	CITATIONS
19	Determinants of myocardial blood flow response to cold pressor testing and pharmacologic vasodilation in healthy humans. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 20-27.	6.4	67
20	Role of PET in the evaluation and understanding of coronary physiology. Journal of Nuclear Cardiology, 2007, 14, 589-603.	2.1	65
21	Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1178-1188.	6.4	56
22	Quantitative Assessment of Myocardial Blood Flowâ€"Clinical and Research Applications. Seminars in Nuclear Medicine, 2014, 44, 274-293.	4.6	52
23	Improvement in coronary endothelial function is independently associated with a slowed progression of coronary artery calcification in type 2 diabetes mellitus. European Heart Journal, 2009, 30, 3064-3073.	2.2	51
24	Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 219-229.	6.4	44
25	Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period. Circulation, 2020, 142, 419-421.	1.6	42
26	Myocardial Blood Flow and InflammatoryÂCardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2017, 10, 157-167.	5.3	41
27	Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. European Heart Journal, 2008, 30, 978-986.	2.2	39
28	Current practice for measurement of radionuclide therapy doses in the UK. Nuclear Medicine Communications, 2004, 25, 419.	1.1	37
29	PET-Determined Hyperemic Myocardial Blood Flow. Journal of the American College of Cardiology, 2014, 64, 1476-1478.	2.8	37
30	Diagnostic Value of PET-Measured Longitudinal Flow Gradient for the Identification of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2014, 7, 387-396.	5.3	36
31	Appropriate Use Criteria for PET Myocardial Perfusion Imaging. Journal of Nuclear Medicine, 2020, 61, 1221-1265.	5.0	36
32	PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 1140-1149.	6.4	35
33	Quantitative PET/CT Measures of Myocardial Flow Reserve and Atherosclerosis for Cardiac Risk Assessment and Predicting Adverse Patient Outcomes. Current Cardiology Reports, 2013, 15, 344.	2.9	34
34	Stress Myocardial Blood Flow Heterogeneity Is a Positron Emission Tomography Biomarker of Ventricular Arrhythmias in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2018, 121, 1081-1089.	1.6	31
35	Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via N-oleoylethanolamide (OEA)-mediated pathways. Thrombosis and Haemostasis, 2015, 113, 838-850.	3.4	29
36	Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: expert panel of the EANM cardiovascular committee and EACVI. European Heart Journal Cardiovascular Imaging, 2015, 16, 1289-1298.	1.2	29

#	Article	IF	CITATIONS
37	Structural epicardial disease and microvascular function are determinants of an abnormal longitudinal myocardial blood flow difference in cardiovascular risk individuals as determined with PET/CT. Journal of Nuclear Cardiology, 2010, 17, 1023-1033.	2.1	28
38	Positron-Emitting Myocardial Blood Flow Tracers and Clinical Potential. Progress in Cardiovascular Diseases, 2015, 57, 588-606.	3.1	26
39	Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. Journal of Nuclear Cardiology, 2007, 14, 688-697.	2.1	24
40	Feasibility Evaluation of Myocardial Cannabinoid Type 1 Receptor ImagingÂinÂObesity. JACC: Cardiovascular Imaging, 2018, 11, 320-332.	5.3	24
41	Effect of Ascorbic Acid on Endothelial Dysfunction of Epicardial Coronary Arteries in Chronic Smokers Assessed by Cold Pressor Testing. Cardiology, 2000, 94, 239-246.	1.4	23
42	Long-Term Survival of Patients with Viable and Nonviable Aneurysms Assessed by ^{99m} Tc-MIBI SPECT and ¹⁸ F-FDG PET: A Comparative Study of Medical and Surgical Treatment. Journal of Nuclear Medicine, 2008, 49, 1288-1298.	5.0	23
43	The Influence of Insulin Resistance, Obesity, and Diabetes Mellitus on Vascular Tone and Myocardial Blood Flow. Current Cardiology Reports, 2012, 14, 217-225.	2.9	23
44	The impacts of severe perfusion defects, akinetic/dyskinetic segments, and viable myocardium on the accuracy of volumes and LVEF measured by gated 99mTc-MIBI SPECT and gated 18F-FDG PET in patients with left ventricular aneurysm: cardiac magnetic resonance imaging as the reference. Journal of Nuclear Cardiology, 2014, 21, 1230-1244.	2.1	20
45	Anti-Apolipoprotein A-1 IgG Levels Predict Coronary Artery Calcification in Obese but Otherwise Healthy Individuals. Mediators of Inflammation, 2012, 2012, 1-10.	3.0	18
46	Effect of Diffuse Subendocardial Hypoperfusion on Left Ventricular Cavity Size by 13N-Ammonia Perfusion PET in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2016, 118, 1908-1915.	1.6	18
47	PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. European Heart Journal Cardiovascular Imaging, 2016, 18, jew116.	1.2	18
48	Cardiac Positron Emission Tomography/Computed Tomography Imaging of the Renin-Angiotensin System in Humans Holds Promise for Image-Guided Approach to Heart Failure Therapy. Journal of the American College of Cardiology, 2012, 60, 2535-2538.	2.8	16
49	"Mismatch―in regional myocardial perfusion defects during exercise and pharmacologic vasodilation: A noninvasive marker of epicardial vasomotor dysfunction?. Journal of Nuclear Cardiology, 2007, 14, 769-774.	2.1	12
50	Impact of Obesity and Bariatric Surgery on Metabolism and Coronary Circulatory Function. Current Cardiology Reports, 2014, 16, 433.	2.9	12
51	Role of PET/CT for the Identification of Cardiac Sarcoid Disease. Annals of Nuclear Cardiology, 2015, 1, 79-86.	0.2	12
52	Plasma palmitoylethanolamide (PEA) as a potential biomarker for impaired coronary function. International Journal of Cardiology, 2017, 231, 1-5.	1.7	11
53	The Trajectory of Lipoprotein(a) During the Peri- and Early Postinfarction Period and the Impact of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition. American Journal of Cardiology, 2022, 171, 1-6.	1.6	11
54	Coronary circulatory function with increasing obesity: A complex Uâ€ŧurn. European Journal of Clinical Investigation, 2022, 52, e13755.	3.4	10

#	Article	IF	CITATIONS
55	Alcohol Binge-Induced Cardiovascular Dysfunction Involves Endocannabinoid–CB1-R Signaling. JACC Basic To Translational Science, 2019, 4, 625-637.	4.1	9
56	68Ga-DOTATOC PET for Treatment Efficacy Evaluation of Cardiac Sarcoidosis. Clinical Nuclear Medicine, 2020, 45, e416-e418.	1.3	9
57	Towards Quantitative Myocardial Perfusion PET in the Clinic. Journal of the American College of Radiology, 2014, 11, 429-432.	1.8	8
58	Comparison of two software systems for quantification of myocardial blood flow in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2019, 26, 1243-1253.	2.1	8
59	Higher incidence of vasodilator-induced left ventricular cavity dilation by PET when compared to treadmill exercise-ECHO in hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2020, 27, 2031-2043.	2.1	8
60	Assessment of coronary artery plaque with non-contrast and T1-weighted magnetic resonance: promise for clinical use?. European Heart Journal, 2019, 40, e20-e22.	2.2	6
61	Clinical Application of Myocardial Blood Flow Quantification in CAD Patients. Annals of Nuclear Cardiology, 2016, 2, 84-93.	0.2	5
62	Emergence of Integrated Cardiac MagneticÂResonance/Positron Emission Tomography Imaging as the Preferred Imaging Modality in Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2018, 11, 108-110.	5.3	5
63	Novel Myocardial PET/CT Receptor Imaging and Potential Therapeutic Targets. Current Cardiology Reports, 2019, 21, 55.	2.9	5
64	Matching between regional coronary vasodilator capacity and corresponding circumferential strain in individuals with normal and increasing body weight. Journal of Nuclear Cardiology, 2012, 19, 693-703.	2.1	4
65	Epicardial adipose tissue: A new cardiovascular risk marker?. International Journal of Cardiology, 2019, 278, 263-264.	1.7	4
66	Another Step Toward Integrated MR/PET as Favored Imaging Modality in Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2022, 15, 457-459.	5.3	4
67	Vascular function of the peripheral and coronary circulation: Worthwhile to assess their relation?. Journal of Nuclear Cardiology, 2011, 18, 201-203.	2.1	3
68	Longitudinal Myocardial Blood Flow Gradient and CAD Detection. Current Cardiology Reports, 2015, 17, 550.	2.9	3
69	Isolated cardiac sarcoidosis - A rare disease entity?. International Journal of Cardiology, 2018, 253, 194-195.	1.7	3
70	Noninvasive stress testing of myocardial perfusion defects: head-to-head comparison of thallium-201 SPECT to MRI perfusion. Journal of Nuclear Cardiology, 2009, 16, 549-561.	2.1	2
71	Coronary Microvascular Dysfunction. Journal of the American College of Cardiology, 2018, 72, 718-720.	2.8	2
72	A Genetic Polymorphism in the Pannexin1 Gene Predisposes for The Development of Endothelial Dysfunction with Increasing BMI. Biomolecules, 2020, 10, 208.	4.0	2

#	Article	IF	CITATIONS
7 3	$^{\circ}$ sup $^{\circ}$ 18 $^{\circ}$ 18 $^{\circ}$ 5 PET in Myocardial Viability Assessment: A Practical and Time-Efficient Protocol. Journal of Nuclear Medicine, 2022, 63, 602-608.	5.0	2
74	Quantitation of Myocardial Perfusion: Absolute Blood Flow Versus Relative Uptake., 2013,, 145-194.		2
75	Psoriasis-Related Visceral Adiposity andÂArterial Inflammation. JACC: Cardiovascular Imaging, 2018, 11, 358-360.	5.3	1
76	Relative disagreement among different software packages in PET-flow quantitation: An appeal for consistency. Journal of Nuclear Cardiology, 2020, 27, 1234-1236.	2.1	1
77	Emergence of endocardium/epicardium flow gradient as novel risk biomarker in patients with hypertrophic cardiomyopathy. IJC Heart and Vasculature, 2020, 26, 100467.	1.1	1
78	Cardiac sarcoidosis and prediction of sudden death: An ongoing clinical dilemma?. International Journal of Cardiology, 2021, 329, 177-178.	1.7	1
79	Entering a new era of the identification and characterization of myocardial ischemic burden with 15O-water PET?. International Journal of Cardiology, 2021, 341, 22-23.	1.7	1
80	Myocardial Perfusion and Coronary Vasomotor Function: Emerging Role of PET Imaging. Vascular Disease Prevention, 2007, 4, 322-332.	0.2	0
81	Role of myocardial perfusion scintigraphy in octogenarians: Time for reappraisal?. Journal of Nuclear Cardiology, 2018, 25, 1350-1352.	2.1	0
82	PET Myocardial Perfusion Imaging. , 0, , 129-174.		0
83	123I-MIBG cardiac sympathetic imaging provides further insight into cardiorenal interactions in systolic heart failure patients. Journal of Nuclear Cardiology, 2021, 28, 2123-2125.	2.1	O
84	Revival of an old stressor: Dobutamine-stimulation for PET myocardial perfusion imaging in patients with end-stage liver disease?. Journal of Nuclear Cardiology, 2020, 27, 2060-2062.	2.1	0
85	Adding clinical value with coronary flow assessment in hypertrophic obstructive cardiomyopathy. IJC Heart and Vasculature, 2020, 27, 100512.	1.1	0
86	Added value gated PET with phase analysis for the detection of scar burden and prognostication in cardiac sarcoidosis?. Journal of Nuclear Cardiology, 2022, 29, 1402-1404.	2.1	0
87	Cardiac Magnetic Resonance Determined T1 Reactivity Holds Promise for a New Avenue of Coronary Circulatory Function Characterization. Circulation: Cardiovascular Imaging, 2021, 14, e012429.	2.6	0
88	Advances in Cardiac Applications for PET and PET/CT., 2004, , 424-443.		0
89	From Myocardial Blood Flow to Receptor Imaging with PET. Annals of Nuclear Cardiology, 2019, 5, 131-140.	0.2	0