
James D Mcghee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1084790/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. Journal of Molecular Biology, 1974, 86, 469-489.	2.0	2,895
2	The GATA family (vertebrates and invertebrates). Current Opinion in Genetics and Development, 2002, 12, 416-422.	1.5	493
3	Specific DNA methylation sites in the vicinity of the chicken β-globin genes. Nature, 1979, 280, 419-420.	13.7	367
4	Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers, 1976, 15, 1345-1375.	1.2	311
5	DNA-Protein Interactions. Annual Review of Biochemistry, 1972, 41, 231-300.	5.0	306
6	The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Developmental Biology, 1998, 198, 286-302.	0.9	260
7	Orientation of the nucleosome within the higher order structure of chromatin. Cell, 1980, 22, 87-96.	13.5	245
8	The C. elegans intestine. WormBook, 2007, , 1-36.	5.3	242
9	Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell, 1983, 33, 831-841.	13.5	240
10	Methylation and gene control. Nature, 1982, 296, 602-603.	13.7	211
11	DNA synthesis and the control of embryonic gene expression in C. elegans. Cell, 1988, 53, 589-599.	13.5	184
12	The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Developmental Biology, 2007, 302, 627-645.	0.9	165
13	ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Developmental Biology, 2009, 327, 551-565.	0.9	129
14	The Gut Esterase Gene (ges-1) From the Nematodes Caenmorhabditis elegans and Caenorhabditis briggsae. Journal of Molecular Biology, 1993, 229, 890-908.	2.0	118
15	Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Developmental Biology, 1986, 114, 109-118.	0.9	113
16	Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease. Cell, 1983, 32, 1205-1215.	13.5	99
17	ELT-3: ACaenorhabditis elegansGATA Factor Expressed in the Embryonic Epidermis during Morphogenesis. Developmental Biology, 1999, 208, 265-280.	0.9	93
18	The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Developmental Biology, 2004, 268, 448-456.	0.9	90

JAMES D MCGHEE

#	Article	IF	CITATIONS
19	Histone hyperacetylation has little effect on the higher order folding of chromatin. Nucleic Acids Research, 1983, 11, 4065-4075.	6.5	87
20	elt-2, a Second GATA Factor from the Nematode Caenorhabditis elegans. Journal of Biological Chemistry, 1995, 270, 14666-14671.	1.6	81
21	The number of charge-charge interactions stabilizing the ends of nucleosome DNA. Nucleic Acids Research, 1980, 8, 2751-2770.	6.5	74
22	Afork head/HNF-3 Homolog Expressed in the Pharynx and Intestine of theCaenorhabditis elegansEmbryo. Developmental Biology, 1996, 178, 289-303.	0.9	73
23	A Gut-to-Pharynx/Tail Switch in Embryonic Expression of the Caenorhabditis elegans ges-1 Gene Centers on Two GATA Sequences. Developmental Biology, 1995, 170, 397-419.	0.9	71
24	Subunit structure of chromatin is the same in plants and animals. Nature, 1975, 254, 449-450.	13.7	70
25	The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Developmental Biology, 2005, 287, 35-47.	0.9	68
26	31P-NMR studies of DNA in nucleosome core particles. Biopolymers, 1980, 19, 523-537.	1.2	65
27	The C. elegans pvfâ€l gene encodes a PDGF/VEGFâ€like factor able to bind mammalian VEGF receptors and to induce angiogenesis. FASEB Journal, 2006, 20, 227-233.	0.2	53
28	Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. Developmental Biology, 2005, 279, 446-461.	0.9	51
29	Homeobox containing genes in the nematodeCaenorhabditis elegans. Nucleic Acids Research, 1990, 18, 6101-6106.	6.5	50
30	The <i>Caenorhabditis elegans</i> intestine. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 347-367.	5.9	48
31	Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell, 1987, 49, 329-336.	13.5	46
32	The Evolutionary Duplication and Probable Demise of an Endodermal GATA Factor in <i>Caenorhabditis elegans</i> . Genetics, 2003, 165, 575-588.	1.2	46
33	The Function and Regulation of the GATA Factor ELT-2 in the <i>C. elegans</i> Endoderm. Development (Cambridge), 2015, 143, 483-91.	1.2	43
34	The high mobility group proteins, HMG 14 and 17, do not prevent the formation of chromatin higher order structure. Nucleic Acids Research, 1982, 10, 2007-2018.	6.5	42
35	Bacterial residence time in the intestine of Caenorhabditis elegans. Nematology, 2007, 9, 87-91.	0.2	35
36	DNA-Protein Interactions in the Caenorhabditis elegans Embryo: Oocyte and Embryonic Factors That Bind to the Promoter of the Gut-Specific ges-1 Gene. Developmental Biology, 1994, 163, 367-380.	0.9	32

JAMES D MCGHEE

#	Article	IF	CITATIONS
37	Reevaluation of the Role of the med-1 and med-2 Genes in Specifying the Caenorhabditis elegans Endoderm. Genetics, 2005, 171, 545-555.	1.2	30
38	An acid phosphatase as a biochemical marker for intestinal development in the nematode Caenorhabditis elegans. Developmental Biology, 1991, 147, 133-143.	0.9	29
39	Uracil-DNA glycosylase as a probe for protein-DNA interactions. Nucleic Acids Research, 1993, 21, 3437-3443.	6.5	28
40	Modulation of Gene Expression in the Embryonic Digestive Tract ofC. elegans. Developmental Biology, 1996, 178, 276-288.	0.9	26
41	Coordination of ges-1 Expression Between the Caenorhabditis Pharynx and Intestine. Developmental Biology, 2001, 239, 350-363.	0.9	24
42	A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2 /insulin signaling and by the TGF-β/Sma/Mab pathway. Developmental Biology, 2016, 413, 112-127.	0.9	24
43	Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Developmental Biology, 2018, 435, 150-161.	0.9	23
44	Development of the C. elegans digestive tract. Current Opinion in Genetics and Development, 2010, 20, 346-354.	1.5	21
45	Reconstitution of nucleosome core particles containing glucosylated DNA. Journal of Molecular Biology, 1982, 158, 685-698.	2.0	18
46	Purification and characterization of a carboxylesterase from the intestine of the nematode Caenorhabditis elegans. Biochemistry, 1987, 26, 4101-4107.	1.2	18
47	Interference Between the PHA-4 and PEB-1 Transcription Factors in Formation of the Caenorhabditis elegans Pharynx. Journal of Molecular Biology, 2002, 320, 697-704.	2.0	18
48	Re-evaluating the role of ELT-3 in a GATA transcription factor circuit proposed to guide aging in C. elegans. Mechanisms of Ageing and Development, 2012, 133, 50-53.	2.2	18
49	Proteome of the <i>Caenorhabditis elegans</i> Oocyte. Journal of Proteome Research, 2011, 10, 2300-2305.	1.8	15
50	The major gut esterase locus in the nematode Caenorhabditis elegans. Molecular Genetics and Genomics, 1986, 202, 30-34.	2.4	13
51	DNA synthesis in the early embryo of the nematode Ascaris suum. Developmental Biology, 1992, 152, 89-93.	0.9	11
52	Recent advances in understanding the molecular mechanisms regulating <i>C. elegans</i> transcription. Developmental Dynamics, 2010, 239, 1388-1404.	0.8	11
53	Homologous tails? Or tales of homology?. BioEssays, 2000, 22, 781-785.	1.2	10
54	Neither Maternal nor Zygotic med-1/med-2 Genes Play a Major Role in Specifying the Caenorhabditis elegans Endoderm. Genetics, 2007, 175, 969-974.	1.2	9

JAMES D MCGHEE

#	Article	IF	CITATIONS
55	Cell fate decisions in the early embryo of the nematodeCaenorhabditis elegans. Genesis, 1995, 17, 155-166.	3.3	8
56	Resolution of sequencing ambiguities: a universal Fokl adapter permits Maxam-Gilbert re-sequencing of single-stranded phagemid DNA. Gene, 1991, 104, 71-74.	1.0	6
57	Unusual DNA packaging characteristics in endoreduplicated Caenorhabditis elegans oocytes defined by in vivo accessibility to an endogenous nuclease activity. Epigenetics and Chromatin, 2013, 6, 37.	1.8	5
58	Evidence for a subunit structure of chromatin in mouse myeloma cells. Chromosoma, 1975, 52, 189-205.	1.0	4
59	Probing and rearranging the transcription factor network controlling theC. elegansendoderm. Worm, 2016, 5, e1198869.	1.0	4
60	How affinity of the ELT-2 GATA factor binding to <i>cis-</i> acting regulatory sites controls <i>C. elegans</i> intestinal gene transcription. Development (Cambridge), 2020, 147, .	1.2	4
61	Characterization of the C. elegans erlin homologue. BMC Cell Biology, 2012, 13, 2.	3.0	3
62	A Strategy To Isolate Modifiers of <i>Caenorhabditis elegans</i> Lethal Mutations: Investigating the Endoderm Specifying Ability of the Intestinal Differentiation GATA Factor ELT-2. G3: Genes, Genomes, Genetics, 2018, 8, 1425-1437.	0.8	3
63	Analysis of the Tet Repressor-Operator Interactions Using the Uracil-DNA Glycosylase Footprinting System. Annals of the New York Academy of Sciences, 1994, 726, 309-311.	1.8	1
64	Reply to the letter from Drs. Kim, Budovskaya and Johnson. Mechanisms of Ageing and Development, 2012, 133, 57-58.	2.2	1
65	Reply to the second letter from Drs. Kim, Budovskaya and Johnson. Mechanisms of Ageing and Development, 2013, 134, 66-67.	2.2	1
66	Higher Orders of Chromatin Structure. , 1983, , 101-112.		1
67	CHROMATIN CONFORMATION AND GENE ACTIVITY. , 1982, , 121-135.		1
68	A carboxylesterase from the parasitic nematode Ascaris suum homologous to the intestinal-specific ges-1 esterase of Caenorhabditis elegans. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 109, 225-236.	0.2	0
69	Chromatin Higher Order Structure and Gene Expression. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1983, , 343-352.	0.2	0
70	-Using the Gene to Reconstruct the Human LEMD2 Mutation Associated with Hutterite-type Cataract/Cardiomyopathy. MicroPublication Biology, 2020, 2020, .	0.1	0