John Iacomini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/108474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 1992, 68, 869-877.	13.5	2,652
2	Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature, 1992, 360, 225-231.	13.7	1,039
3	Oocyte Generation in Adult Mammalian Ovaries by Putative Germ Cells in Bone Marrow and Peripheral Blood. Cell, 2005, 122, 303-315.	13.5	636
4	T cell receptor δgene mutant mice: Independent generation of αβ T cells and programmed rearrangements of γδTCR genes. Cell, 1993, 72, 337-348.	13.5	517
5	Identification of a microRNA signature of renal ischemia reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14339-14344.	3.3	340
6	A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. Journal of Experimental Medicine, 2008, 205, 3133-3144.	4.2	277
7	Tolerization of Anti–Galα1-3Gal Natural Antibody–forming B Cells by Induction of Mixed Chimerism. Journal of Experimental Medicine, 1998, 187, 1335-1342.	4.2	189
8	Inhibition of Xenoreactive Natural Antibody Production by Retroviral Gene Therapy. , 1998, 281, 1845-1847.		139
9	Costimulation-Dependent Expression of MicroRNA-214 Increases the Ability of T Cells To Proliferate by Targeting <i>Pten</i> . Journal of Immunology, 2010, 185, 990-997.	0.4	116
10	Induction of T-cell tolerance to an MHC class I alloantigen by gene therapy. Blood, 2002, 99, 4394-4399.	0.6	83
11	Prevention of type 1 diabetes by gene therapy. Journal of Clinical Investigation, 2004, 114, 969-978.	3.9	74
12	Targeting Tim-1 to overcome resistance to transplantation tolerance mediated by CD8 T17 cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10734-10739.	3.3	64
13	The Role of T Cell Help in the Production of Antibodies Specific for Galα1–3Gal. Journal of Immunology, 2002, 168, 1479-1483.	0.4	52
14	MicroRNA Expression Data Reveals a Signature of Kidney Damage following Ischemia Reperfusion Injury. PLoS ONE, 2011, 6, e23011.	1.1	46
15	A critical role for interleukin 4 in activating alloreactive CD4 T cells. Nature Immunology, 2000, 1, 257-261.	7.0	45
16	Induction of Central Deletional T Cell Tolerance by Gene Therapy. Journal of Immunology, 2002, 169, 1930-1935.	0.4	44
17	T cells expressing the Î ³ δT cell receptor are not required for egg granuloma formation in schistosomiasis. European Journal of Immunology, 1995, 25, 884-888.	1.6	43
18	Induction of Central Tolerance by Mature T Cells. Journal of Immunology, 2004, 173, 7217-7222.	0.4	40

JOHN ΙΑCOMINI

#	Article	IF	CITATIONS
19	A Novel Clinically Relevant Approach to Tip the Balance Toward Regulation in Stringent Transplant Model. Transplantation, 2010, 90, 260-269.	0.5	40
20	Tolerization of a Type I Allergic Immune Response through Transplantation of Genetically Modified Hematopoietic Stem Cells. Journal of Immunology, 2008, 180, 8168-8175.	0.4	38
21	MicroRNA-494 Promotes Cyclosporine-Induced Nephrotoxicity and Epithelial to Mesenchymal Transition by Inhibiting PTEN. American Journal of Transplantation, 2015, 15, 1682-1691.	2.6	37
22	The influence of natural antibody specificity on antigen immunogenicity. European Journal of Immunology, 2005, 35, 2638-2647.	1.6	36
23	Adult bone marrow contains precursors for CD5+ B cells. European Journal of Immunology, 1996, 26, 2537-2540.	1.6	33
24	Hyperlipidemia Promotes Anti-Donor Th17 Responses That Accelerate Allograft Rejection. American Journal of Transplantation, 2015, 15, 2336-2345.	2.6	30
25	Expression of Antigen on Mature Lymphocytes Is Required to Induce T Cell Tolerance by Gene Therapy. Journal of Immunology, 2002, 169, 3771-3776.	0.4	29
26	Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer. Journal of Molecular Medicine, 2015, 93, 619-631.	1.7	27
27	LONG-TERM EXPRESSION OF THE GENE ENCODING GREEN FLUORESCENT PROTEIN IN MURINE HEMATOPOIETIC CELLS USING RETROVIRAL GENE TRANSFER1. Transplantation, 1998, 65, 1233-1240.	0.5	27
28	HUMAN CELL-MEDIATED REJECTION OF PORCINE XENOGRAFTS IN AN IMMUNODEFICIENT MOUSE MODEL1. Transplantation, 1997, 63, 1331-1338.	0.5	26
29	CD4+ T CELLS ARE ABLE TO REJECT CLASS I DISPARATE ALLOGRAFTS1. Transplantation, 1997, 64, 335-340.	0.5	26
30	The mechanism of specific prolongation of class I-mismatched skin grafts induced by retroviral gene therapy. European Journal of Immunology, 1997, 27, 1177-1181.	1.6	25
31	Defective proliferative responses in B lymphocytes and thymocytes that lack neurofibromin. Molecular Immunology, 2002, 38, 701-708.	1.0	25
32	Induction of Robust Diabetes Resistance and Prevention of Recurrent Type 1 Diabetes Following Islet Transplantation by Gene Therapy. Journal of Immunology, 2007, 179, 6762-6769.	0.4	24
33	Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade. American Journal of Transplantation, 2015, 15, 2324-2335.	2.6	24
34	GENE THERAPY AND TRANSPLANTATION1. Transplantation, 2000, 69, 1995-1999.	0.5	24
35	The effect of an immunoglobulin μ transgene on B cell maturation. European Journal of Immunology, 1992, 22, 745-751.	1.6	21
36	Induction of Donor-Specific Tolerance in Sublethally Irradiated Recipients by Gene Therapy. Molecular Therapy, 2005, 12, 353-359.	3.7	20

JOHN ΙΑCOMINI

#	Article	IF	CITATIONS
37	Regulation of Oxidative Stress Responses by Ataxia-Telangiectasia Mutated Is Required for T Cell Proliferation. Journal of Immunology, 2007, 178, 4757-4763.	0.4	20
38	Induction of Alloreactive CD4 T Cell Tolerance in Molecular Chimeras: A Possible Role for Regulatory T Cells. Journal of Immunology, 2006, 176, 3410-3416.	0.4	19
39	T cells mediate resistance to genetically modified bone marrow in lethally irradiated recipients1. Transplantation, 2002, 74, 1454-1460.	0.5	17
40	lg Knock-In Mice Producing Anti-Carbohydrate Antibodies: Breakthrough of B Cells Producing Low Affinity Anti-Self Antibodies. Journal of Immunology, 2008, 180, 3839-3848.	0.4	15
41	Defining the Requirements for Peptide Recognition in Gene Therapy-Induced T Cell Tolerance. Journal of Immunology, 2000, 165, 4842-4847.	0.4	11
42	Independent effects of sham laparotomy and anesthesia on hepatic microRNA expression in rats. BMC Research Notes, 2014, 7, 702.	0.6	11
43	Induction of transplantation tolerance by combining non-myeloablative conditioning with delivery of alloantigen by T cells. Clinical Immunology, 2008, 127, 130-137.	1.4	10
44	Defining a microRNA-mRNA interaction map for calcineurin inhibitor induced nephrotoxicity. American Journal of Transplantation, 2018, 18, 796-809.	2.6	10
45	Hyperlipidemia and Allograft Rejection. Current Transplantation Reports, 2019, 6, 90-98.	0.9	10
46	Measuring T Cell Alloreactivity to Predict Kidney Transplant Outcomes: Are We There Yet?. Journal of the American Society of Nephrology: JASN, 2006, 17, 328-330.	3.0	9
47	Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen. Clinical Immunology, 2010, 136, 174-187.	1.4	9
48	Engraftment of Genetically Modified Bone Marrow Cells in Sensitized Hosts. Molecular Therapy, 2002, 6, 252-257.	3.7	7
49	Engraftment of retrovirally transduced Bet v 1-GFP expressing bone marrow cells leads to allergen-specific tolerance. Immunobiology, 2013, 218, 1139-1146.	0.8	7
50	The site of allergen expression in hematopoietic cells determines the degree and quality of tolerance induced through molecular chimerism. European Journal of Immunology, 2013, 43, 2451-2460.	1.6	7
51	Impact of environmental factors on alloimmunity and transplant fate. Journal of Clinical Investigation, 2017, 127, 2482-2491.	3.9	7
52	New Approaches to the Prevention of Organ Allograft Rejection and Tolerance Induction. Transplantation, 2007, 84, S38-S41.	0.5	6
53	Liver Sinusoidal Endothelial Cells as Possible Vehicles for Gene Therapy: A Comparison Between Plasmid-Based and Lentiviral Gene Transfer Techniques. Endothelium: Journal of Endothelial Cell Research, 2008, 15, 165-173.	1.7	6
54	The role of complement receptors in production of antibodies specific for Gal??1,3Gal. Transplantation, 2004, 77, 314-316.	0.5	5

JOHN ΙΑCOMINI

#	Article	IF	CITATIONS
55	Impact of hyperlipidemia on alloimmunity. Current Opinion in Organ Transplantation, 2017, 22, 14-21.	0.8	5
56	Monitoring tolerance induction. Pediatric Transplantation, 2006, 10, 5-6.	0.5	4
57	Immunoglobulin heavy chain transgenic mice expressing Gal??(1,3)Gal-reactive antibodies1. Transplantation, 2002, 73, 1558-1564.	0.5	3
58	Hyperlipidemiaâ€induced metabolic changes in regulatory T cells result in altered function. European Journal of Immunology, 2021, 51, 2576-2589.	1.6	3
59	The role of IL-6 in hyperlipidemia-induced accelerated rejection. American Journal of Transplantation, 2022, 22, 427-437.	2.6	2
60	Conditions permitting shortâ€term engraftment of human T cells in RAGâ€1 mutant mice. Xenotransplantation, 1997, 4, 245-251.	1.6	1
61	REJECTION OF ??GAL MISMATCHED SKIN GRAFTS: A MODEL OF ACUTE VASCULAR REJECTION?. Transplantation, 2002, 74, 599-600.	0.5	1