
Jitsuro Sugie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10847164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Least Possible Impulse for Oscillating All Nontrivial Solutions of Second-Order Nonoscillatory Differential Equations. Qualitative Theory of Dynamical Systems, 2022, 21, 1.	0.8	Ο
2	Limit cycles of a class of Liénard systems derived from state-dependent impulses. Nonlinear Analysis: Hybrid Systems, 2022, 45, 101188.	2.1	2
3	Qualitative behavior of solutions of Liénard-type systems with state-dependent impulses. Nonlinear Analysis: Real World Applications, 2022, 67, 103634.	0.9	2
4	Number of positive periodic solutions for first-order nonlinear difference equations with feedback. Applied Mathematics and Computation, 2021, 391, 125626.	1.4	2
5	Attraction Region for the Classical Lotkaâ^'Volterra Predatorâ^'Prey model Caused by impulsive Effects. Qualitative Theory of Dynamical Systems, 2021, 20, 1.	0.8	1
6	Effect of decimation on positive periodic solutions of discrete generalized Nicholson's blowflies models with multiple time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2021, 97, 105731.	1.7	3
7	Uniform global asymptotic stability for oscillators with nonlinear damping and nonlinear restoring terms. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105969.	1.7	1
8	Interval criteria for oscillation of second-order self-adjoint impulsive differential equations. Proceedings of the American Mathematical Society, 2020, 148, 1095-1108.	0.4	7
9	Global asymptotic stability of a unique positive periodic solution for a discrete hematopoiesis model with unimodal production functions. Monatshefte Fur Mathematik, 2020, 191, 325-348.	0.5	3
10	Global attractivity of a unique positive periodic solution for a first-order nonlinear difference equation with time delays. Journal of Difference Equations and Applications, 2020, 26, 855-870.	0.7	1
11	Existence of multiple positive periodic solutions for discrete hematopoiesis models with a unimodal production function. Communications in Nonlinear Science and Numerical Simulation, 2020, 89, 105273.	1.7	6
12	Uniform global asymptotic stability of time-varying Lotka–Volterra predator–prey systems. Applied Mathematics Letters, 2019, 87, 125-133.	1.5	4
13	Interval oscillation criteria for second-order linear differential equations with impulsive effects. Journal of Mathematical Analysis and Applications, 2019, 479, 621-642.	0.5	5
14	Sufficient conditions for convergence of solutions of damped elliptic equations. Monatshefte Fur Mathematik, 2019, 189, 441-458.	0.5	0
15	Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions. Applied Mathematical Modelling, 2019, 68, 152-168.	2.2	8
16	Nonoscillation of Mathieu equations with two frequencies. Applied Mathematics and Computation, 2019, 346, 491-499.	1.4	3
17	Global asymptotic stability and equiasymptotic stability for a time-varying phytoplankton–zooplankton–fish system. Nonlinear Analysis: Real World Applications, 2019, 46, 116-136.	0.9	6
18	Philos-type oscillation criteria for linear differential equations with impulsive effects. Journal of Mathematical Analysis and Applications, 2019, 470, 911-930.	0.5	8

#	Article	IF	CITATIONS
19	Integral condition for oscillation of half-linear differential equations with damping. Applied Mathematics Letters, 2018, 79, 146-154.	1.5	3
20	Convergence of Radially Symmetric Solutions for (p,Âq)-Laplacian Elliptic Equations with a Damping Term. Journal of Dynamics and Differential Equations, 2018, 30, 579-600.	1.0	2
21	Nonoscillation of Mathieu's equation whose coefficient is a finite Fourier series approximating a square wave. Monatshefte Fur Mathematik, 2018, 186, 721-743.	0.5	2
22	Oscillation problems for Hill's equation with periodic damping. Journal of Mathematical Analysis and Applications, 2018, 466, 56-70.	0.5	3
23	Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation, II. Applied Mathematics and Computation, 2017, 304, 142-152.	1.4	9
24	Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. Proceedings of the American Mathematical Society, 2017, 145, 2059-2073.	0.4	11
25	A new application method for nonoscillation criteria of Hille-Wintner type. Monatshefte Fur Mathematik, 2017, 183, 201-218.	0.5	5
26	Simple conditions for parametrically excited oscillations of generalized Mathieu equations. Journal of Mathematical Analysis and Applications, 2017, 446, 233-247.	0.5	9
27	Uniform asymptotic stability of time-varying damped harmonic oscillators. Proceedings of the American Mathematical Society, Series B, 2017, 4, 31-46.	0.6	2
28	Asymptotic Stability of Coupled Oscillators with Time-Dependent Damping. Qualitative Theory of Dynamical Systems, 2016, 15, 553-573.	0.8	6
29	Parameter diagram for global asymptotic stability of damped half-linear oscillators. Monatshefte Fur Mathematik, 2016, 179, 149-160.	0.5	8
30	Uniform global asymptotic stability for oscillators with superlinear damping. Journal of Mathematical Analysis and Applications, 2015, 425, 827-853.	0.5	1
31	A necessary and sufficient condition for global asymptotic stability of time-varying Lotka–Volterra predator–prey systems. Nonlinear Analysis: Theory, Methods & Applications, 2015, 127, 128-142.	0.6	5
32	Asymptotic stability of a pendulum with quadratic damping. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 865-884.	0.7	5
33	Global Dynamics of Froude-Type Oscillators with Superlinear Damping Terms. Acta Applicandae Mathematicae, 2014, 130, 81-113.	0.5	5
34	Growth conditions for uniform asymptotic stability of damped oscillators. Nonlinear Analysis: Theory, Methods & Applications, 2014, 98, 83-103.	0.6	8
35	Convergence of solutions of nonlinear systems with integrable forcing term and its applications to a biological model. Applied Mathematics and Computation, 2013, 219, 8169-8177.	1.4	1
36	Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping. Proceedings of the American Mathematical Society, 2013, 141, 2419-2427.	0.4	9

#	Article	IF	CITATIONS
37	Uniqueness of Limit Cycles in a Rosenzweig–MacArthur Model with Prey Immigration. SIAM Journal on Applied Mathematics, 2012, 72, 299-316.	0.8	21
38	Global Asymptotic Stability for Oscillators with Superlinear Damping. Journal of Dynamics and Differential Equations, 2012, 24, 777-802.	1.0	5
39	Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients. Monatshefte Fur Mathematik, 2012, 166, 255-280.	0.5	8
40	Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment. Proceedings of the American Mathematical Society, 2011, 139, 3475-3475.	0.4	9
41	Global asymptotic stability for damped half-linear oscillators. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 7151-7167.	0.6	16
42	Asymptotic stability for quasi-linear systems whose linear approximation is not assumed to be uniformly attractive. Annali Di Matematica Pura Ed Applicata, 2011, 190, 409-425.	0.5	2
43	Global asymptotic stability for predator–prey models with environmental time-variations. Applied Mathematics Letters, 2011, 24, 1973-1980.	1.5	6
44	Three-dimensional time-varying nonlinear systems containing a Hamilton system. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 2296-2308.	0.6	2
45	Uniform global asymptotic stability for half-linear differential systems with time-varying coefficients. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2011, 141, 1083-1101.	0.8	10
46	Integral conditions on the uniform asymptotic stability for two-dimensional linear systems with time-varying coefficients. Proceedings of the American Mathematical Society, 2010, 138, 2493-2503.	0.4	11
47	Global attractivity for half-linear differential systems with periodic coefficients. Journal of Mathematical Analysis and Applications, 2010, 371, 95-112.	0.5	23
48	Asymptotic stability for three-dimensional linear differential systems with time-varying coefficients. Quarterly of Applied Mathematics, 2009, 67, 687-705.	0.5	5
49	Influence of anti-diagonals on the asymptotic stability for linear differential systems. Monatshefte Fur Mathematik, 2009, 157, 163-176.	0.5	11
50	Attractivity for two-dimensional linear systems whose anti-diagonal coefficients are periodic. Proceedings of the American Mathematical Society, 2009, 137, 4117-4127.	0.4	5
51	Nonoscillation criteria for secondâ€order nonlinear differential equations with decaying coefficients. Mathematische Nachrichten, 2008, 281, 1624-1637.	0.4	13
52	A nonoscillation theorem for half-linear differential equations with periodic coefficients. Applied Mathematics and Computation, 2008, 199, 447-455.	1.4	25
53	CONVERGENCE OF SOLUTIONS OF TIME-VARYING LINEAR SYSTEMS WITH INTEGRABLE FORCING TERM. Bulletin of the Australian Mathematical Society, 2008, 78, 445-462.	0.3	16
54	Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Scientiarum Mathematicarum Hungarica, 2007, 44, 159-189.	0.1	4

#	Article	IF	CITATIONS
55	Existence of limit cycles for Liénard-type systems with p-Laplacian. Nonlinear Differential Equations and Applications, 2007, 14, 91-110.	0.4	4
56	Homoclinic orbits in predator-prey systems with a nonsmooth prey growth rate. Quarterly of Applied Mathematics, 2006, 64, 447-461.	0.5	1
57	Comparison theorems for oscillation of second-order half-linear differential equations. Acta Mathematica Hungarica, 2006, 111, 165-179.	0.3	26
58	A non-oscillation theorem for nonlinear differential equations with <i>p</i> -Laplacian. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2006, 136, 633-647.	0.8	24
59	Growth conditions for oscillation of nonlinear differential equations with p-Laplacian. Journal of Mathematical Analysis and Applications, 2005, 306, 18-34.	0.5	14
60	Homoclinic orbits in generalized Liénard systems. Journal of Mathematical Analysis and Applications, 2005, 309, 211-226.	0.5	9
61	Oscillation Criteria of Kneser-Hille Type for Second-Order Differential Equations with Nonlinear Perturbed Terms. Rocky Mountain Journal of Mathematics, 2004, 34, 1519.	0.2	3
62	Global asymptotic stability of nonautonomous systems of Liénard type. Journal of Mathematical Analysis and Applications, 2004, 289, 673-690.	0.5	28
63	Oscillation of solutions of second-order nonlinear self-adjoint differential equations. Journal of Mathematical Analysis and Applications, 2004, 291, 387-405.	0.5	15
64	Applications of phase plane analysis of a Liénard system to positive solutions of Schrödinger equations. Proceedings of the American Mathematical Society, 2002, 131, 501-509.	0.4	4
65	Oscillation constant of second-order non-linear self-adjoint differential equations. Annali Di Matematica Pura Ed Applicata, 2002, 181, 309-337.	0.5	15
66	An infinite sequence of nonoscillation theorems for second-order nonlinear differential equations of Euler type. Nonlinear Analysis: Theory, Methods & Applications, 2002, 50, 373-388.	0.6	14
67	Decaying positive solutions of quasilinear elliptic equations in exterior domains in R2. Journal of Mathematical Analysis and Applications, 2002, 275, 288-311.	0.5	1
68	Liénard dynamics with an open limit orbit. Nonlinear Differential Equations and Applications, 2001, 8, 83-97.	0.4	8
69	Nonoscillation theorems for a nonlinear self-adjoint differential equation. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 4433-4444.	0.6	2
70	Oscillation Criteria for Second Order Nonlinear Differential Equations of Euler Type. Journal of Mathematical Analysis and Applications, 2001, 253, 414-439.	0.5	34
71	A NONOSCILLATION THEOREM FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DECAYING COEFFICIENTS. Bulletin of the London Mathematical Society, 2001, 33, 299-308.	0.4	1
72	Uniqueness of limit cycles in a predator-prey system with Holling-type functional response. Quarterly of Applied Mathematics, 2000, 58, 577-590.	0.5	14

#	Article	IF	CITATIONS
73	Oscillation of the Riemann–Weber Version of Euler Differential Equations with Delay. Georgian Mathematical Journal, 2000, 7, 577-584.	0.2	3
74	Global asymptotic stability of a predator–prey system of Holling type. Nonlinear Analysis: Theory, Methods & Applications, 1999, 38, 105-121.	0.6	40
75	Two-Parameter Bifurcation in a Predator–Prey System of Ivlev Type. Journal of Mathematical Analysis and Applications, 1998, 217, 349-371.	0.5	69
76	On Global Asymptotic Stability of Systems of Liénard Type. Journal of Mathematical Analysis and Applications, 1998, 219, 140-164.	0.5	28
77	On a predator-prey system of Holling type. Proceedings of the American Mathematical Society, 1997, 125, 2041-2050.	0.4	94
78	Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2, 237-254.	0.5	14
79	Nonlinear oscillations of second order differential equations of Euler type. Proceedings of the American Mathematical Society, 1996, 124, 3173-3181.	0.4	29
80	When all trajectories in the Li�nard plane cross the vertical isocline?. Nonlinear Differential Equations and Applications, 1995, 2, 527-551.	0.4	23
81	Some criteria of the existence of limit cycles for a planar system of liénard type. Nonlinear Analysis: Theory, Methods & Applications, 1993, 21, 803-814.	0.6	5
82	On the Liénard system which has no periodic solutions. Mathematical Proceedings of the Cambridge Philosophical Society, 1993, 113, 413-422.	0.3	8
83	On the stability for a population growth equation with time delay. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1992, 120, 179-184.	0.8	17
84	Non-existence of periodic solutions of the Liénard system. Journal of Mathematical Analysis and Applications, 1991, 159, 224-236.	0.5	31
85	The global centre for the Liénard system. Nonlinear Analysis: Theory, Methods & Applications, 1991, 17, 333-345.	0.6	11
86	Nonexistence of periodic solutions for the FitzHugh nerve system. Quarterly of Applied Mathematics, 1991, 49, 543-554.	0.5	9
87	A necessary and sufficient condition for oscillation of the generalized Liénard equation. Annali Di Matematica Pura Ed Applicata, 1989, 154, 223-230.	0.5	28
88	Perturbing uniformly stable nonlinear scalar delay-differential equations. Nonlinear Analysis: Theory, Methods & Applications, 1988, 12, 303-311.	0.6	9
89	On the stability region of scalar delay-differential equations. Journal of Mathematical Analysis and Applications, 1988, 134, 408-425.	0.5	18
90	Continuation results for differential equations without uniqueness by two Liapunov functions. Proceedings of the Japan Academy Series A: Mathematical Sciences, 1984, 60, .	0.3	4