
Romain M Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10846971/publications.pdf Version: 2024-02-01

ROMAIN M WOLF

#	Article	IF	CITATIONS
1	Optimizing a Weakly Binding Fragment into a Potent RORÎ ³ t Inverse Agonist with Efficacy in an in Vivo Inflammation Model. Journal of Medicinal Chemistry, 2018, 61, 6724-6735.	6.4	22
2	Feasibility and physiological relevance of designing highly potent aminopeptidase-sparing leukotriene A4 hydrolase inhibitors. Scientific Reports, 2017, 7, 13591.	3.3	28
3	Discovery of CDZ173 (Leniolisib), Representing a Structurally Novel Class of PI3K Delta-Selective Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 975-980.	2.8	70
4	Discovery of novel pyrrolidineoxy-substituted heteroaromatics as potent and selective PI3K delta inhibitors with improved physicochemical properties. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5657-5662.	2.2	18
5	Discovery and Pharmacological Characterization of Novel Quinazoline-Based PI3K Delta-Selective Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 762-767.	2.8	50
6	Extracting ligands from receptors by reversed targeted molecular dynamics. Journal of Computer-Aided Molecular Design, 2015, 29, 1025-1034.	2.9	3
7	Molecular Characterization of Oxysterol Binding to the Epstein-Barr Virus-induced Gene 2 (GPR183). Journal of Biological Chemistry, 2012, 287, 35470-35483.	3.4	46
8	1-Alkyl-4-phenyl-6-alkoxy-1 <i>H</i> -quinazolin-2-ones: A Novel Series of Potent Calcium-Sensing Receptor Antagonists. Journal of Medicinal Chemistry, 2010, 53, 2250-2263.	6.4	35
9	Improved model building and assessment of the Calciumâ€sensing receptor transmembrane domain. Proteins: Structure, Function and Bioinformatics, 2008, 71, 215-226.	2.6	28
10	Receptors for Protons or Lipid Messengers or Both?. Journal of Receptor and Signal Transduction Research, 2006, 26, 599-610.	2.5	128
11	Homology Modeling of the Transmembrane Domain of the Human Calcium Sensing Receptor and Localization of an Allosteric Binding Site. Journal of Biological Chemistry, 2004, 279, 7254-7263.	3.4	140
12	Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25, 1157-1174.	3.3	14,342
13	Proton-sensing G-protein-coupled receptors. Nature, 2003, 425, 93-98.	27.8	616
14	Replacement of the phosphodiester linkage in oligonucleotides by an amide: Effect of backbone length on duplex stability with RNA complement. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 447-452.	2.2	13
15	Amide backbone modifications for antisense oligonucleotides carrying potential intercalating substituents: Influence on the thermodynamic stability of the corresponding duplexes with RNA- and DNA- complements. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1869-1874.	2.2	6
16	Stark erhöhte Affinitämodifizierter Oligonucleotide mit in ihrer Konformation eingeschräkten Furanoseâ€Ringen für komplementä RNAâ€Sträge. Angewandte Chemie, 1996, 108, 2960-2964.	2.0	4
17	Amide Backbones with Conformationally Restricted Furanose Rings: Highly Improved Affinity of the Modified Oligonucleotides for Their RNA Complements. Angewandte Chemie International Edition in English, 1996, 35, 2790-2794.	4.4	67
18	Replacement of the phosphodiester linkage in oligonucleotides by an acetylenic bond: Comparison between carbon-, sulfur-, and oxygen-containing analogs. Tetrahedron Letters, 1996, 37, 5511-5514.	1.4	13

ROMAIN M WOLF

#	Article	IF	CITATIONS
19	Molecular mechanics and dynamics studies on two structurally related amide-modified DNA backbones for antisense technology. Bioorganic and Medicinal Chemistry, 1995, 3, 321-335.	3.0	16
20	Replacement of the phosphodiester linkage in oligonucleotides by a C=C double bond: Comparison of the cis and trans isomers. Tetrahedron Letters, 1995, 36, 6879-6882.	1.4	14
21	Molecular Dynamics Simulations of a r(GA ₁₂ C)·d(CT ₁₂ C) Hybrid Duplex. Journal of Biomolecular Structure and Dynamics, 1994, 11, 1161-1174.	3.5	16
22	Ureas as Backbone Replacements for the Phosphodiester Linkage in Oligonucleotides. Synlett, 1994, 1994, 57-61.	1.8	23
23	Comparison of two amides as backbone replacement of the phosphodiester linkage in oligodeoxynucleotides. Tetrahedron Letters, 1994, 35, 5225-5228.	1.4	52
24	Replacement of the phosphodiester linkage in oligonucleotides: Comparison of two structural amide isomers. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 873-878.	2.2	34
25	Amides as a New Type of Backbone Modification in Oligonucleotides. Angewandte Chemie International Edition in English, 1994, 33, 226-229.	4.4	119
26	Novel Backbone Replacements for Oligonucleotides. ACS Symposium Series, 1994, , 24-39.	0.5	5
27	SYNTHETIC MODIFICATIONS OF ANTISENSE OLIGONUCLEOTIDES: NOVEL BACKBONE REPLACEMENTS WITH IMPROVED PROPERTIES. Bulletin Des Sociétés Chimiques Belges, 1994, 103, 705-717.	0.0	9
28	Chiral discrimination of the enantiomers of δ-phenyl-δ-valerolactone by cellulose triacetate: A chromatographic and microcalorimetric study of the thermodynamics. Chirality, 1993, 5, 538-544.	2.6	4
29	Synthesis of thymidine dimer derivatives containing an amide linkage and their incorporation into oligodeoxyribonucleotides. Tetrahedron Letters, 1993, 34, 6383-6386.	1.4	65
30	Amides as Substitute for the Phosphodiester Linkage in Antisense Oligonucleotides. Synlett, 1993, 1993, 733-736.	1.8	48
31	Chromatographic resolution on methylbenzoylcellulose beads. Journal of Chromatography A, 1992, 595, 63-75.	3.7	63
32	Benzoyl cellulose beads in the pure polymeric form as a new powerful sorbent for the chromatographic resolution of racemates. Chirality, 1991, 3, 43-55.	2.6	87
33	Preparation of chiral building blocks and auxiliaries by chromatography on cellulose triacetate (CTA) Tj ETQq1 1	0.784314 2.6	rgBT/Overlo
34	Quantitative correlation between calculated molecular properties and retention of a series of structurally related racemates on cellulose triacetate. Journal of the Chemical Society Perkin Transactions II, 1988, , 893.	0.9	36
35	Chromatographic resolution of racemates on chiral stationary phases. Journal of Chromatography A, 1985, 347, 25-37.	3.7	115