Janos Ludwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10845671/publications.pdf

Version: 2024-02-01

516710 794594 5,936 20 16 19 citations g-index h-index papers 20 20 20 8188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	cGAS produces a $2\hat{a}\in^2$ -Sâ \in^2 -linked cyclic dinucleotide second messenger that activates STING. Nature, 2013, 498, 380-384.	27.8	1,193
2	Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Molecular Therapy, 2008, 16, 1833-1840.	8.2	1,106
3	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	14.3	660
4	Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Research, 2011, 39, e142-e142.	14.5	586
5	Antiviral immunity via RIG-l-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514, 372-375.	27.8	459
6	Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 2008, 44, 3-12.	3.8	419
7	Rapid and efficient synthesis of nucleoside 5'-0-(1-thiotriphosphates), 5'-triphosphates and 2',3'-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. Journal of Organic Chemistry, 1989, 54, 631-635.	3.2	356
8	RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. Rna, 2011, 17, 1697-1712.	3.5	307
9	Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Structural and Molecular Biology, 2010, 17, 781-787.	8.2	229
10	A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2â€ ² O-Methylated Self RNA. Immunity, 2015, 43, 41-51.	14.3	221
11	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	14.5	202
12	Synthesis of nucleoside 5'-O-(1,3-dithiotriphosphates) and 5'-O-(1,1-dithiotriphosphates). Journal of Organic Chemistry, $1991, 56, 1777-1783$.	3.2	44
13	Synthesis of $\hat{I}\pm$ -P-Modified Nucleoside Diphosphates with Ethylenediamine. Journal of the American Chemical Society, 2005, 127, 16782-16783.	13.7	31
14	Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. Journal of Leukocyte Biology, 2009, 86, 663-670.	3.3	31
15	RIG-I Resists Hypoxia-Induced Immunosuppression and Dedifferentiation. Cancer Immunology Research, 2017, 5, 455-467.	3.4	29
16	RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection. Molecular Therapy, 2017, 25, 2093-2103.	8.2	26
17	Ribozyme Assays to Quantify the Capping Efficiency of In Vitro-Transcribed mRNA. Pharmaceutics, 2022, 14, 328.	4.5	20
18	NUDT2 initiates viral RNA degradation by removal of 5′-phosphates. Nature Communications, 2021, 12, 6918.	12.8	13

#	Article	IF	CITATIONS
19	Synthesis of 5′-Dithiotriphosphate Derivatives of 3′-Deoxy 3′-Azidothymidine. Nucleosides & Nucleotides, 1991, 10, 663-664.	0.5	4
20	Mechanisms of small RNA mediated mammalian gene silencing. FASEB Journal, 2007, 21, A149.	0.5	0