Jean-Marc Joubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1084531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supervised deep learning prediction of the formation enthalpy of complex phases using a DFT database: The <mml:math <br="" display="inline" id="d1e425" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si20.svg"><mml:mrow><mml:mi>Ïf</mml:mi><mml:mo>â^</mml:mo></mml:mrow></mml:math> phase as an example. Computational Materials Science, 2022, 201, 110864.	1.4	11
2	Comment on the paper "Experimental investigation of the Ni–V–W ternary phase diagram", Calphad: Comput. Coupling Phase Diagrams Thermochem. 76 (2022) 102384. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102424.	0.7	0
3	Intermetallic compounds of the Crâ \in "Mn system investigated using in situ powder neutron diffraction: The reported order-disorder transformation of the lf phase elucidated. Intermetallics, 2022, 146, 107580.	1.8	6
4	Thermodynamic modeling of Cr and Cr–H systems up to high temperatures and high pressures. International Journal of Hydrogen Energy, 2022, , .	3.8	2
5	Site Occupancy Determination in Th ₂ Zn ₁₇ - and TbCu ₇ -types Sm ₂ Fe _{17–<i>x</i>} Co _{<i>x</i>} Compounds using Synchrotron Resonant Diffraction. Inorganic Chemistry, 2021, 60, 1533-1541.	1.9	4
6	Experimental study, first-principles calculation and thermodynamic modelling of the Cr–Fe–Nb–Sn–Zr quinary system for application as cladding materials in nuclear reactors Journal of Nuclear Materials, 2021, 544, 152692.	1.3	7
7	LaNi5 related AB5 compounds: Structure, properties and applications. Journal of Alloys and Compounds, 2021, 862, 158163.	2.8	64
8	T2 phase site occupancies in the Cr–Si–B system: a combined synchroton-XRD/first-principles study. Scripta Materialia, 2021, 199, 113854.	2.6	3
9	Development of Thermokinetic Tools for Phase Transformation Studies of Zr Alloys for Both In-Service and LOCA Conditions. , 2021, , 833-854.		Ο
10	Modification of Lu's (2005) high pressure model for improved high pressure/high temperature extrapolations. Part I: Modeling of platinum at high pressure/high temperature. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102304.	0.7	2
11	Modification of Lu's (2005) high pressure model for improved high pressure/high temperature extrapolations. Part II: Modeling of osmium–platinum system at high pressure/high temperature. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102311.	0.7	2
12	What is the Enthalpy Contribution to the Stabilization of the Co–Cr–Fe–Mn–Ni Faced-centered Cubic Solid Solution?. Journal of Phase Equilibria and Diffusion, 2021, 42, 561-570.	0.5	4
13	Thermodynamic modelling of the Fe–Sn–Zr system based on new experiments and first-principles calculations. Journal of Alloys and Compounds, 2020, 821, 153200.	2.8	12
14	Phase transformations during cooling from the βZr phase temperature domain in several hydrogen-enriched zirconium alloys studied by in situ and ex situ neutron diffraction. Acta Materialia, 2020, 199, 453-468.	3.8	9
15	Optimization of Criteria for an Efficient Screening of New Thermoelectric Compounds: The TiNiSi Structure-Type as a Case-Study. ACS Combinatorial Science, 2020, 22, 813-820.	3.8	6
16	Experimental Study of the Cr-Hf-Nb System: Liquidus Projection and 1200°C Isothermal Section. Journal of Phase Equilibria and Diffusion, 2020, 41, 702-721.	0.5	1
17	From single phase to dual-phase TRIP-TWIP titanium alloys: Design approach and properties. Materialia, 2020, 12, 100700.	1.3	28
18	Study of the FCC+L12 two-phase region in complex concentrated alloys based on the Al–Co–Cr–Fe–Ni–Ti system. Materialia, 2020, 14, 100905.	1.3	32

#	Article	IF	CITATIONS
19	Pd–H and Ni–H phase diagrams using cluster variation method and Monte Carlo simulation. Philosophical Magazine, 2019, 99, 2376-2392.	0.7	4
20	Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys. Acta Materialia, 2019, 177, 266-279.	3.8	95
21	Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 2019, 44, 7809-7859.	3.8	460
22	Mechanosynthesis and Reversible Hydrogen Storage of Mg ₂ Ni and Mg ₂ Cu Alloys. Materials Transactions, 2019, 60, 441-449.	0.4	8
23	Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. International Journal of Hydrogen Energy, 2019, 44, 10770-10776.	3.8	25
24	Description of terminal substitutional solid solutions using the sublattice model. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101685.	0.7	4
25	Experimental investigations and thermodynamic modelling of the Cr–Nb–Sn–Zr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 43-54.	0.7	21
26	Atomic interactions in C15 Laves phases. Journal of Materials Science, 2019, 54, 4742-4753.	1.7	4
27	The T phase with the V6Si5 type structure in the Mo-Si-Ti system studied by ab initio calculations and X-ray diffraction. Scripta Materialia, 2019, 159, 76-79.	2.6	1
28	Looking for new thermoelectric materials among TMX intermetallics using high-throughput calculations. Computational Materials Science, 2019, 156, 96-103.	1.4	19
29	Characterization of refractory steel oxidation at high temperature. Corrosion Science, 2018, 132, 223-233.	3.0	19
30	Synthesis of TiFe Hydrogen Absorbing Alloys Prepared by Mechanical Alloying and SPS Treatment. Metals, 2018, 8, 264.	1.0	11
31	Vibration analysis of hydrogen, deuterium and tritium in metals: consequences on the isotope effect. Journal of Physics Condensed Matter, 2018, 30, 335402.	0.7	12
32	Thermodynamic modeling of the Mo–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 62, 215-222.	0.7	6
33	Crystal structures of the AB5 phase intermetallic compounds. , 2018, , 195-205.		0
34	Electrochemical properties of AB5 compounds. , 2018, , 247-249.		0
35	Crystal structures of the AB5 phase hydrides. , 2018, , 206-222.		0
36	Thermodynamic Properties of AB5 compounds. , 2018, , 223-244.		0

#	Article	IF	CITATIONS
37	Ageing properties of AB5 compounds. , 2018, , 245-246.		Ο
38	Study of the ternary system Al–H– RE (RE Â=ÂEr, La and Y) in liquid state. International Journal of Hydrogen Energy, 2017, 42, 22348-22352.	3.8	0
39	Phase diagram of the Fe-Sn-Zr system at 800°C. Journal of Nuclear Materials, 2017, 487, 186-191.	1.3	2
40	The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Materialia, 2017, 128, 327-336.	3.8	171
41	Thermodynamic modelling of the Cr-Nb-Sn system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 57, 37-45.	0.7	14
42	Experimental evaluation of the Nb Si Ti system from as-cast alloys. Intermetallics, 2017, 82, 76-92.	1.8	14
43	Systematic First-Principles Study of Binary Metal Hydrides. ACS Combinatorial Science, 2017, 19, 513-523.	3.8	26
44	In situ monitoring of isothermal phase transformation in two Nb stabilized austenitic stainless steels (316Nb) by neutron diffraction. Journal of Alloys and Compounds, 2016, 688, 695-702.	2.8	7
45	Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano Structures Nano Objects, 2016, 7, 92-100.	1.9	11
46	Order-disorder transitions in the Fe2VAl Heusler alloy. Acta Materialia, 2016, 121, 126-136.	3.8	44
47	Thermodynamic assessment of the Pd Rh Ru system using calphad and first-principles methods. Journal of Nuclear Materials, 2016, 474, 163-173.	1.3	15
48	Irregular Homogeneity Domains in Ternary Intermetallic Systems. Applied Sciences (Switzerland), 2015, 5, 1570-1589.	1.3	9
49	ZenGen, a tool to generate ordered configurations for systematic first-principles calculations: The Cr–Mo–Ni–Re system as a case study. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 51, 233-240.	0.7	39
50	Thermodynamic Modeling of the Ni–H System. Journal of Physical Chemistry C, 2015, 119, 24546-24557.	1.5	6
51	Thermodynamic modelling of metal–hydrogen systems using the Calphad method. Journal of Alloys and Compounds, 2015, 645, S379-S383.	2.8	4
52	Experimental study and thermodynamic description of the erbium–hydrogen–zirconium ternary system. Journal of Nuclear Materials, 2015, 456, 7-16.	1.3	1
53	Microstructure and Properties of a Three-Layer Nuclear Fuel Cladding Prototype Containing Erbium as a Neutronic Burnable Poison. , 2015, , 184-224.		0
54	Experimental and computed phase diagrams of the Fe–Re system. Journal of Physics Condensed Matter, 2014, 26, 485402.	0.7	6

#	Article	IF	CITATIONS
55	First-principles-based phase diagrams and thermodynamic properties of TCP phases in Re–X systems (X=Ta, V, W). Computational Materials Science, 2014, 81, 433-445.	1.4	32
56	Equilibrium characterization and thermodynamic calculations on highly alloyed refractory steels. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 46, 55-61.	0.7	8
57	Phase stability in the ternary Re–W–Zr system. Acta Materialia, 2014, 70, 56-65.	3.8	8
58	Partial Redetermination of the Fe-W Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2996-3003.	1.1	26
59	Experimental study of the Mn–Re system. Journal of Alloys and Compounds, 2013, 575, 344-349.	2.8	1
60	CALPHAD description of the Mo–Re system focused on the sigma phase modeling. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 43, 18-31.	0.7	41
61	Experimental investigation of the Mo–Ni–Re system. Journal of Alloys and Compounds, 2013, 559, 101-111.	2.8	10
62	A modulated structure derived from the σ phase in the Mo–Ni–Re system. Intermetallics, 2013, 37, 42-45.	1.8	3
63	Experimental study and thermodynamic assessment of the erbium–hydrogen binary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 41, 50-59.	0.7	15
64	χ and σ Phases in Binary Rhenium–Transition Metal Systems: a Systematic First-Principles Investigation. Inorganic Chemistry, 2013, 52, 3674-3686.	1.9	31
65	Evolution of cobalt-free tungsten heavy alloys for kinetic energy penetrators. Powder Metallurgy, 2013, 56, 347-350.	0.9	23
66	Modelling the sigma phase. MATEC Web of Conferences, 2013, 3, 01076.	0.1	0
67	CALPHAD Modeling of Metal–Hydrogen Systems: A Review. Jom, 2012, 64, 1438-1447.	0.9	18
68	Experimental determination and thermodynamic modeling of the Ni–Re binary system. Journal of Solid State Chemistry, 2012, 196, 320-325.	1.4	18
69	Comparison of the Site Occupancies Determined by Combined Rietveld Refinement and Density Functional Theory Calculations: Example of the Ternary Mo–Ni–Re σ Phase. Inorganic Chemistry, 2012, 51, 3071-3078.	1.9	30
70	Modification of the hydrogenation properties of LaNi5 upon Ni substitution by Rh, Ir, Pt or Au. Journal of Alloys and Compounds, 2012, 511, 95-100.	2.8	21
71	Non-Stoichiometry and Calphad Modeling of Frank-Kasper Phases. Applied Sciences (Switzerland), 2012, 2, 669-681.	1.3	23
72	Stability of erbium hydrides studied by DFT calculations. International Journal of Hydrogen Energy, 2012, 37, 4246-4253.	3.8	12

#	Article	IF	CITATIONS
73	Experimental study of the Er–Zr–O ternary system at 800°C and 1100°C. Journal of Nuclear Materials, 2012, 427, 393-395.	1.3	2
74	The T2 phase in the Nb–Si–B system studied by ab initio calculations and synchrotron X-ray diffraction. Journal of Solid State Chemistry, 2012, 190, 111-117.	1.4	11
75	Hydrogenation properties of Fe–Ti–V bcc alloys. Journal of Alloys and Compounds, 2011, 509, 372-379.	2.8	33
76	Influence of the C14 Ti35.4V32.3Fe32.3 Laves phase on the hydrogenation properties of the body-centered cubic compound Ti24.5V59.3Fe16.2. Journal of Alloys and Compounds, 2011, 509, 3013-3018.	2.8	13
77	The phase diagrams of the ternary systems La–Ni–M (MÂ=ÂRe, Ru, Os, Rh, Ir, Pd, Ag, Au) in the La-poor region. Intermetallics, 2011, 19, 295-301.	1.8	11
78	A thermodynamic description of the system Pd–Rh–H–D–T. Acta Materialia, 2011, 59, 1680-1691.	3.8	14
79	Investigation of modification of hydrogenation and structural properties of LaNi5 intermetallic compound induced by substitution of Ni by Pd. Journal of Solid State Chemistry, 2011, 184, 123-133.	1.4	14
80	Crystal structures of three intermetallic phases in the Mo–Pt–Si system. Journal of Solid State Chemistry, 2010, 183, 173-179.	1.4	2
81	Experimental re-determination and thermodynamic assessment of the erbium–zirconium system. Journal of Nuclear Materials, 2010, 402, 102-107.	1.3	11
82	A Calphad-type equation of state for hydrogen gas and its application to the assessment of Rh–H system. International Journal of Hydrogen Energy, 2010, 35, 2104-2111.	3.8	17
83	Phase equilibria in the Fe–Ti–V system. International Journal of Materials Research, 2010, 101, 1414-1423.	0.1	10
84	First principles calculations of the σ and χ phases in the Mo–Re and W–Re systems. Journal of Physics Condensed Matter, 2010, 22, 035402.	0.7	31
85	Resonant X-ray diffraction study and electronic structure calculations of three Mo–Ru–Si ternary phases. Intermetallics, 2010, 18, 781-790.	1.8	8
86	An experimental study of the Fe–Sn–Zr ternary system at 900°C. Intermetallics, 2010, 18, 2224-2228.	1.8	13
87	Ab initio ternary -phase diagram: The Cr–Mo–Re system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 487-494.	0.7	21
88	Crystal chemistry and Calphad modelling of the χ phase. Progress in Materials Science, 2009, 54, 945-980.	16.0	51
89	Thermodynamic assessment of the Pd–H–D–T system. Journal of Nuclear Materials, 2009, 395, 79-88.	1.3	19
90	Thermodynamic assessment of the Molybdenum–Rhenium system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 502-510.	0.7	19

#	Article	IF	CITATIONS
91	On the existence and the crystal structure of Ni4W, NiW and NiW2 compounds. Intermetallics, 2009, 17, 174-178.	1.8	50
92	Interaction of hydrogen with the β-Al3Mg2 complex metallic alloy: Experimental reliability of theoretical predictions. Journal of Alloys and Compounds, 2009, 472, 565-570.	2.8	18
93	Contribution of Thermodynamic Calculations to Metallurgical Studies of Multi-Component Zirconium Based Alloys. , 2009, , 754-775.		7
94	Crystal chemistry and Calphad modeling of the i_f phase. Progress in Materials Science, 2008, 53, 528-583.	16.0	213
95	The effect of over-stoichiometry on the electrochemical properties of LaNi5 derived electrode materials. Journal of Alloys and Compounds, 2008, 465, 517-521.	2.8	4
96	The Zr–Sn binary system: New experimental results and thermodynamic assessment. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 593-601.	0.7	50
97	The Samson phase, β-Mg2Al3, revisited. Zeitschrift Für Kristallographie, 2007, 222, .	1.1	118
98	Mixed site occupancies in μ-Zr-Nb-Al by resonant powder diffraction. Zeitschrift Für Kristallographie, Supplement, 2007, 2007, 311-316.	0.5	4
99	Hydrogenation of LaNi5 studied by in situ synchrotron powder diffraction. Acta Materialia, 2006, 54, 713-719.	3.8	33
100	Optimisation of MmNi5-xSnxMmNi5-xSnx (Mm=LaMm=La, Ce, Nd and Pr, 0.27 <x<0.50.27<x<0.5) compositions as hydrogen storage materials. International Journal of Hydrogen Energy, 2006, 31, 101-108.</x<0.50.27<x<0.5) 	3.8	21
101	Structural characterization of the Ta-rich part of the Ta–Al system. Journal of Solid State Chemistry, 2006, 179, 3385-3393.	1.4	27
102	Using first-principles results to calculate finite-temperature thermodynamic properties of the Nb–Ni μ phase in the Bragg–Williams approximation. Philosophical Magazine, 2006, 86, 1631-1641.	0.7	18
103	Hydrogen cycling induced diffraction peak broadening in C14 and C15 Laves phases. Journal of Solid State Chemistry, 2005, 178, 1799-1806.	1.4	9
104	Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials. Physica B: Condensed Matter, 2005, 362, 199-207.	1.3	14
105	Crystal structure, hydrogen absorption properties and crystal structure of the deuterides of some Nb–Ni derived phase compounds. Journal of Solid State Chemistry, 2005, 178, 1620-1629.	1.4	11
106	TEM study of the dislocations generated by hydrogen absorption/desorption in LaNi5 and derivatives. Journal of Alloys and Compounds, 2005, 404-406, 570-575.	2.8	17
107	Compressibility and thermal expansion of LaNi5 and its substitutional derivatives (LaNi5â^xMx; M=Mn,) Tj ETQq1	1,0,78431 1.8	14 rgBT /Ove
108	Phase transitions in metal hydrides byin-situsynchrotron powder diffraction with high time-resolution. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c103-c103.	0.3	0

#	Article	IF	CITATIONS
109	Neutron diffraction study of the deuterides of the over-stoichiometric compounds LaNi5+x. Journal of Solid State Chemistry, 2004, 177, 1219-1229.	1.4	18
110	In situ neutron diffraction study of deuterium gas absorption by AB5+y alloys used as negative electrode materials for Ni-MH batteries. Physica B: Condensed Matter, 2004, 350, E427-E430.	1.3	5
111	Assessment of the niobium–nickel system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28, 299-306.	0.7	41
112	Mixed site occupancies in the \hat{l} ¹ /4 phase. Intermetallics, 2004, 12, 1373-1380.	1.8	55
113	Investigation of structural and hydrogen absorption properties in the LaNi5â^'xPtx–H2 system. Journal of Solid State Chemistry, 2003, 173, 379-386.	1.4	14
114	Electrochemical study of LaNi3.55Mn0.4Al0.3Co0.75 by cavity microelectrode in 7 mol lâ^'1 KOH solution. Journal of Power Sources, 2003, 124, 564-571.	4.0	18
115	Hydrogen absorption properties of topologically close-packed phases of the Nb–Ni–Al system. Journal of Alloys and Compounds, 2003, 356-357, 442-446.	2.8	16
116	Effects of cobalt replacement by nickel, manganese, aluminium and iron on the crystallographic and electrochemical properties of AB5-type alloys. Journal of Alloys and Compounds, 2003, 356-357, 779-783.	2.8	29
117	Influence of the rare earth composition on the properties of Ni–MH electrodes. Journal of Alloys and Compounds, 2003, 360, 290-293.	2.8	11
118	Metallic Hydrides II: Materials for Electrochemical Storage. MRS Bulletin, 2002, 27, 694-698.	1.7	51
119	Defects Generated by Hydrogen Absorption/Desorption in Lani5 and Derivatives. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	1
120	In situ XAS study of the hydrogenation of AB5 compounds (A=La, Ce and B=Ni3.55Mn0.4Al0.3Co0.75). Journal of Alloys and Compounds, 2002, 330-332, 246-249.	2.8	13
121	Hydrogen cycling induced degradation in LaNi5-type materials. Journal of Alloys and Compounds, 2002, 330-332, 208-214.	2.8	91
122	Mg6Ir2H11, a new metal hydride containing saddle-like [IrH4]5â^' and square-pyramidal [IrH5]4â^' hydrido complexes. Journal of Alloys and Compounds, 2002, 340, 180-188.	2.8	32
123	Contribution of the Rietveld method to non-stoichiometric phase modeling. Part I: generalities. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 419-425.	0.7	9
124	Contribution of the Rietveld method to non-stoichiometric phase modeling. Part II: α-Tl5Te3 and μ Nb-Ni as experimental examples. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 427-438.	0.7	36
125	A Structural Study of the Homogeneity Domain of LaNi5. Journal of Solid State Chemistry, 2002, 166, 1-6.	1.4	33
126	Structural study of the LaNi 4.6 Ge 0.4 -D 2 system using X-ray and neutron powder diffraction. Applied Physics A: Materials Science and Processing, 2002, 74, s1037-s1039.	1.1	13

#	Article	IF	CITATIONS
127	In situ neutron-diffraction study of deuterium desorption . from LaNi 5+x (x ?1) alloy. Applied Physics A: Materials Science and Processing, 2002, 74, s1175-s1177.	1.1	6
128	Tl2Te and its relationship with Tl5Te3. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, i63-i65.	0.4	25
129	Microelectrochemistry study of metal-hydride battery materials. Journal of Power Sources, 2002, 109, 281-286.	4.0	18
130	Hydrogen absorption in vanadium- and niobium-based topologically close-packed structures. Journal of Alloys and Compounds, 2001, 317-318, 71-76.	2.8	12
131	Intermetallic compounds as negative electrodes of Ni/MH batteries. Applied Physics A: Materials Science and Processing, 2001, 72, 225-238.	1.1	182
132	Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5and substitutional derivatives. Journal of Applied Crystallography, 2000, 33, 997-1005.	1.9	74
133	Evaluation of a 5 kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland. International Journal of Hydrogen Energy, 2000, 25, 97-109.	3.8	179
134	Investigation of the electronic properties of substituted LaNi5 compounds used as material for batteries. Journal of Materials Chemistry, 2000, 10, 2741-2747.	6.7	20
135	Crystal Structure of Nonstoichiometric Copper-Substituted La(Ni1â^'zCuz)x Compounds Studied by Neutron and Synchrotron Anomalous Powder Diffraction. Journal of Solid State Chemistry, 1999, 146, 313-321.	1.4	34
136	Crystallographic study of LaNi5â^'xSnx (0.2â‰ ¤ â‰ 6 .5) compounds and their hydrides. Journal of Alloys and Compounds, 1999, 293-295, 124-129.	2.8	63
137	Thermodynamic study of the Cr-Ni-Zr system. Journal of Phase Equilibria and Diffusion, 1998, 19, 6-10.	0.3	7
138	Site Occupancies in the Battery Electrode Material LaNi3.55Mn0.4Al0.3Co0.75 as Determined by Multiwavelength Synchrotron Powder Diffraction. Journal of Applied Crystallography, 1998, 31, 327-332.	1.9	57
139	Powder diffraction line broadening in hydrogen activated LaNi3.55Mn0.4Al0.3Co0.75 and its hydride studied by synchrotron radiation. Journal of Alloys and Compounds, 1998, 265, 311-314.	2.8	8
140	Thermodynamic and structural comparison between two potential metal-hydride battery materials LaNi3.55Mn0.4Al0.3Co0.75 and CeNi3.55Mn0.4Al0.3Co0.75. Journal of Alloys and Compounds, 1998, 275-277, 118-122.	2.8	25
141	Mg ₃ IrH _{~5} , Another Example of Hydrogen Induced Anisotropic Line Broadening Due to Microtwinning. Materials Science Forum, 1998, 278-281, 121-126.	0.3	4
142	Refînement of the crystal structure of zirconium nickel, Zr8Ni21. Zeitschrift Fur Kristallographie - New Crystal Structures, 1998, 213, 227-228.	0.1	7
143	Electrochemical performances of ZrM2 (M=V, Cr, Mn, Ni) Laves phases and the relation to microstructures and thermodynamical properties. Journal of Alloys and Compounds, 1997, 253-254, 564-569.	2.8	34
144	Zirconium–Nickel, Zr7Ni10: Space Group Revision for the Stoichiometric Phase. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1536-1538.	0.4	29

#	Article	IF	CITATIONS
145	Improvement of the electrochemical activity of Zrî—,Niî—,Cr Laves phase hydride electrodes by secondary phase precipitation. Journal of Alloys and Compounds, 1996, 240, 219-228.	2.8	68
146	Metallurgical state of lanthanum and its effects on the activation behaviour of Zr(Cr0.4Ni0.6)2 hydride formation. Journal of Alloys and Compounds, 1996, 239, 193-197.	2.8	18
147	Maximum hydrogen storage capacity of amorphous Ni1 \$minus; xZrx alloys. International Journal of Hydrogen Energy, 1996, 21, 927-930.	3.8	12
148	The Zr-Ni-Cr system at 1000 °C in the ZrCr2-ZrNi-Ni-Cr region. Journal of Phase Equilibria and Diffusion, 1995, 16, 485-492.	0.3	14
149	Hydrogen absorption properties of several intermetallic compounds of the ZrNi system. Journal of Alloys and Compounds, 1995, 231, 494-497.	2.8	64
150	Neutron diffraction study of Zr(Cr0.6Ni0.4)2D3.3. Journal of Alloys and Compounds, 1995, 217, 283-286.	2.8	16