Joao A P Coutinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10844657/publications.pdf Version: 2024-02-01

367 papers	25,277 citations	5268 83 h-index	10158 140 g-index
372 all docs	372 docs citations	372 times ranked	12992 citing authors

#	Article	IF	CITATIONS
1	Development of quantitative structure-property relationship to predict the viscosity of deep eutectic solvent for CO2 capture using molecular descriptor. Journal of Molecular Liquids, 2022, 347, 118239.	4.9	20
2	Separation of Albumin from Bovine Serum Applying Ionic-Liquid-Based Aqueous Biphasic Systems. Applied Sciences (Switzerland), 2022, 12, 707.	2.5	5
3	Comparison of two computational methods for solvent screening in countercurrent and centrifugal partition chromatography. Journal of Chromatography A, 2022, 1666, 462859.	3.7	6
4	Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from <i>Phaffia rhodozyma</i> yeast and preparation of biodegradable films. Green Chemistry, 2022, 24, 118-123.	9.0	30
5	Aqueous Biphasic Systems Comprising Natural Organic Acid-Derived Ionic Liquids. Separations, 2022, 9, 46.	2.4	2
6	The impact of size and shape in the performance of hydrotropes: a case-study of alkanediols. Physical Chemistry Chemical Physics, 2022, 24, 7624-7634.	2.8	5
7	Ionogels for Biomedical Applications. Materials Horizons, 2022, , 391-425.	0.6	2
8	Bioâ€Based Solar Energy Harvesting for Onsite Mobile Optical Temperature Sensing in Smart Cities. Advanced Science, 2022, 9, e2104801.	11.2	14
9	Encapsulated Protic Ionic Liquids as Sustainable Materials for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2022, 61, 4046-4057.	3.7	4
10	Selective Separation of Vanillic Acid from Other Lignin-Derived Monomers Using Centrifugal Partition Chromatography: The Effect of pH. ACS Sustainable Chemistry and Engineering, 2022, 10, 4913-4921.	6.7	11
11	Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules, 2022, 27, 2540.	3.8	12
12	Electrolyte Effects on the Amino Acid Solubility in Water: Solubilities of Glycine, <scp>l</scp> -Leucine, <scp>l</scp> -Phenylalanine, and <scp>l</scp> -Aspartic Acid in Salt Solutions of (Na ⁺ , K ⁺ , NH ₄ ⁺)/(Cl [–] ,) Tj ETQq0 0 0 rgBT /O	verlöck 10	0 TP 50 292 T
13	Liquefying Flavonoids with Terpenoids through Deep Eutectic Solvent Formation. Molecules, 2022, 27, 2649.	3.8	9
14	Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg ²⁺ or Ca ²⁺) Cations. Journal of Chemical & Engineering Data, 2022, 67, 1565-1572.	1.9	3
15	Extensive characterization of choline chloride and its solid–liquid equilibrium with water. Physical Chemistry Chemical Physics, 2022, 24, 14886-14897.	2.8	12
16	Integrated Approach to Extract and Purify Proteins from Honey by Ionic Liquid-Based Three-Phase Partitioning. ACS Sustainable Chemistry and Engineering, 2022, 10, 9275-9281.	6.7	6
17	Uncovering the Use of Fucoxanthin and Phycobiliproteins into Solid Matrices to Increase Their Emission Quantum Yield and Photostability. Applied Sciences (Switzerland), 2022, 12, 5839.	2.5	3
18	Comment on "Structural Study of a Eutectic Solvent Reveals Hydrophobic Segregation and Lack of Hydrogen Bonding between the Components― ACS Sustainable Chemistry and Engineering, 2022, 10, 8669-8670.	6.7	5

#	Article	IF	CITATIONS
19	Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles' Molecular Descriptors. Molecules, 2022, 27, 4489.	3.8	14
20	Using COSMO-RS to Predict Hansen Solubility Parameters. Industrial & Engineering Chemistry Research, 2022, 61, 15631-15638.	3.7	6
21	Towards the purification of IgY from egg yolk by centrifugal partition chromatography. Separation and Purification Technology, 2022, 299, 121697.	7.9	7
22	The role of ionic vs. non-ionic excipients in APIs-based eutectic systems. European Journal of Pharmaceutical Sciences, 2021, 156, 105583.	4.0	10
23	Nucleophilic degradation of diazinon in thermoreversible polymer–polymer aqueous biphasic systems. Physical Chemistry Chemical Physics, 2021, 23, 4133-4140.	2.8	Ο
24	The impact of the counterion in the performance of ionic hydrotropes. Chemical Communications, 2021, 57, 2951-2954.	4.1	12
25	Recovery of Chlorophyll <i>a</i> Derivative from <i>Spirulina maxima</i> : Its Purification and Photosensitizing Potential. ACS Sustainable Chemistry and Engineering, 2021, 9, 1772-1780.	6.7	20
26	Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chemistry, 2021, 23, 3683-3692.	9.0	16
27	Selective Sequential Recovery of Zinc and Copper from Acid Mine Drainage. ACS Sustainable Chemistry and Engineering, 2021, 9, 3647-3657.	6.7	16
28	Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins. ACS Sustainable Chemistry and Engineering, 2021, 9, 3942-3954.	6.7	16
29	Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends in Biotechnology, 2021, 39, 1131-1143.	9.3	19
30	Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems. Biotechnology and Bioengineering, 2021, 118, 2514-2523.	3.3	10
31	Infinite Dilution Activity Coefficients in the Smectic and Isotropic Phases of Tetrafluoroborate-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2587-2596.	1.9	5
32	A HNO ₃ â€Responsive Aqueous Biphasic System for Metal Separation: Application towards Ce ^{IV} Recovery. ChemSusChem, 2021, 14, 3018-3026.	6.8	8
33	Cholinium-based ionic liquids as bioinspired hydrotropes to tackle solubility challenges in drug formulation. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 86-92.	4.3	28
34	Integrated Biocatalytic Platform Based on Aqueous Biphasic Systems for the Sustainable Oligomerization of Rutin. ACS Sustainable Chemistry and Engineering, 2021, 9, 9941-9950.	6.7	11
35	Valorization of Spent Coffee by Caffeine Extraction Using Aqueous Solutions of Cholinium-Based Ionic Liquids. Sustainability, 2021, 13, 7509.	3.2	9
36	Differences on the impact of water on the deep eutectic solvents betaine/urea and choline/urea. Journal of Chemical Physics, 2021, 155, 034501.	3.0	19

#	Article	IF	CITATIONS
37	Integrated Production and Separation of Furfural Using an Acidic-Based Aqueous Biphasic System. ACS Sustainable Chemistry and Engineering, 2021, 9, 12205-12212.	6.7	3
38	Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (<i>Gadus morhua</i>). Green Chemistry, 2021, 23, 8940-8948.	9.0	20
39	Opposite Effects Induced by Cholinium-Based Ionic Liquid Electrolytes in the Formation of Aqueous Biphasic Systems Comprising Polyethylene Glycol and Sodium Polyacrylate. Molecules, 2021, 26, 6612.	3.8	1
40	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	6.7	23
41	Synthesis of Purine-Based Ionic Liquids and Their Applications. Molecules, 2021, 26, 6958.	3.8	4
42	Chlorophylls Extraction from Spinach Leaves Using Aqueous Solutions of Surface-Active Ionic Liquids. Sustainable Chemistry, 2021, 2, 764-777.	4.7	6
43	Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior. ChemSusChem, 2020, 13, 784-790.	6.8	63
44	The Perspective of Cooperative Hydrotropy on the Solubility in Aqueous Solutions of Cyrene. Industrial & Engineering Chemistry Research, 2020, 59, 18649-18658.	3.7	14
45	Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustainable Chemistry and Engineering, 2020, 8, 12132-12141.	6.7	65
46	Selective Separation of Manganese, Cobalt, and Nickel in a Fully Aqueous System. ACS Sustainable Chemistry and Engineering, 2020, 8, 12260-12269.	6.7	18
47	Understanding the Formation of Deep Eutectic Solvents: Betaine as a Universal Hydrogen Bond Acceptor. ChemSusChem, 2020, 13, 4916-4921.	6.8	68
48	Encapsulated Aminoâ€Acidâ€Based Ionic Liquids for CO ₂ Capture. European Journal of Inorganic Chemistry, 2020, 2020, 3158-3166.	2.0	19
49	Integrated Leaching and Separation of Metals Using Mixtures of Organic Acids and Ionic Liquids. Molecules, 2020, 25, 5570.	3.8	8
50	Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems. Physical Chemistry Chemical Physics, 2020, 22, 24771-24783.	2.8	9
51	Eutectic Mixtures Based on Polyalcohols as Sustainable Solvents: Screening and Characterization. ACS Sustainable Chemistry and Engineering, 2020, 8, 15317-15326.	6.7	29
52	Towards the differential diagnosis of prostate cancer by the pre-treatment of human urine using ionic liquids. Scientific Reports, 2020, 10, 14931.	3.3	11
53	Investigation of Kraft Lignin Solubility in Protic Ionic Liquids and Their Aqueous Solutions. Industrial & amp; Engineering Chemistry Research, 2020, 59, 18193-18202.	3.7	15
54	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	3.8	99

#	Article	IF	CITATIONS
55	Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 18577-18589.	6.7	48
56	Integrative platform for the selective recovery of intracellular carotenoids and lipids from <i>Rhodotorula glutinis</i> CCT-2186 yeast using mixtures of bio-based solvents. Green Chemistry, 2020, 22, 8478-8494.	9.0	31
57	Unveiling the mechanism of hydrotropy: evidence for water-mediated aggregation of hydrotropes around the solute. Chemical Communications, 2020, 56, 7143-7146.	4.1	40
58	Insights on the Extraction Performance of Alkanediols and Glycerol: Using Juglans regia L. Leaves as a Source of Bioactive Compounds. Molecules, 2020, 25, 2497.	3.8	13
59	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	6.7	35
60	Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chemistry, 2020, 22, 2810-2820.	9.0	67
61	Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chemistry, 2020, 22, 2474-2487.	9.0	82
62	lonic Liquid-Mediated Recovery of Carotenoids from the <i>Bactris gasipaes</i> Fruit Waste and Their Application in Food-Packaging Chitosan Films. ACS Sustainable Chemistry and Engineering, 2020, 8, 4085-4095.	6.7	43
63	Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. Sustainability, 2020, 12, 3358.	3.2	12
64	Liquefying Compounds by Forming Deep Eutectic Solvents: A Case Study for Organic Acids and Alcohols. Journal of Physical Chemistry B, 2020, 124, 4174-4184.	2.6	25
65	Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. Journal of Colloid and Interface Science, 2020, 574, 324-336.	9.4	28
66	Enhanced Extraction of Levodopa from <i>Mucuna pruriens</i> Seeds Using Aqueous Solutions of Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 6682-6689.	6.7	12
67	Potential Threats of Ionic Liquids to the Environment and Ecosphere. , 2020, , 1-17.		1
68	Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Journal of Solution Chemistry, 2019, 48, 962-982.	1.2	603
69	Use of Ionic Liquids as Cosurfactants in Mixed Aqueous Micellar Two-Phase Systems to Improve the Simultaneous Separation of Immunoglobulin G and Human Serum Albumin from Expired Human Plasma. ACS Sustainable Chemistry and Engineering, 2019, 7, 15102-15113.	6.7	21
70	Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chemical Communications, 2019, 55, 10253-10256.	4.1	272
71	Recovery of Syringic Acid from Industrial Food Waste with Aqueous Solutions of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 14143-14152.	6.7	17
72	Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography. Green Chemistry, 2019, 21, 5501-5506.	9.0	10

#	Article	IF	CITATIONS
73	Surface crystallization of ionic liquid crystals. Physical Chemistry Chemical Physics, 2019, 21, 17792-17800.	2.8	6
74	What a difference a methyl group makes – probing choline–urea molecular interactions through urea structure modification. Physical Chemistry Chemical Physics, 2019, 21, 18278-18289.	2.8	24
75	Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chemical Communications, 2019, 55, 8643-8646.	4.1	10
76	The Role of Charge Transfer in the Formation of Type I Deep Eutectic Solvent-Analogous Ionic Liquid Mixtures. Molecules, 2019, 24, 3687.	3.8	21
77	Application of Ionic Liquids in Separation and Fractionation Processes. , 2019, , 637-665.		1
78	Protic Ionic Liquids as Cell-Disrupting Agents for the Recovery of Intracellular Carotenoids from Yeast <i>Rhodotorula glutinis</i> CCT-2186. ACS Sustainable Chemistry and Engineering, 2019, 7, 16765-16776.	6.7	53
79	Ion speciation: a key for the understanding of the solution properties of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2019, 21, 21626-21632.	2.8	11
80	Greener Terpene–Terpene Eutectic Mixtures as Hydrophobic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 17414-17423.	6.7	85
81	Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chemistry, 2019, 21, 5671-5682.	9.0	31
82	Synthesis and Characterization of Surfaceâ€Active Ionic Liquids Used in the Disruption of <i>Escherichia Coli</i> Cells. ChemPhysChem, 2019, 20, 727-735.	2.1	22
83	Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	16
84	Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Frontiers in Chemistry, 2019, 7, 459.	3.6	15
85	Laccase Activation in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 11806-11814.	6.7	95
86	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. Physical Chemistry Chemical Physics, 2019, 21, 15046-15061.	2.8	32
87	Aquatic Toxicology of Ionic Liquids (ILs). , 2019, , 1-18.		7
88	Integrated Extraction-Preservation Strategies for RNA Using Biobased Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 9439-9448.	6.7	20
89	Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems. Physical Chemistry Chemical Physics, 2019, 21, 7462-7473.	2.8	23
90	R-phycoerythrin extraction and purification from fresh <i>Gracilaria</i> sp. using thermo-responsive systems. Green Chemistry, 2019, 21, 3816-3826.	9.0	26

#	Article	IF	CITATIONS
91	Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chemical Engineering, 2019, 1, .	3.4	14
92	A Statistical Associating Fluid Theory Perspective of the Modeling of Compounds Containing Ethylene Oxide Groups. Industrial & Engineering Chemistry Research, 2019, 58, 3562-3582.	3.7	8
93	Understanding the adsorption of ionic liquids onto zeolite ZSM-5 from aqueous solution: experimental and computational modelling. Physical Chemistry Chemical Physics, 2019, 21, 24518-24526.	2.8	9
94	An integrated process combining the reaction and purification of PEGylated proteins. Green Chemistry, 2019, 21, 6407-6418.	9.0	5
95	Solvatochromism as a new tool to distinguish structurally similar compounds. Journal of Molecular Liquids, 2019, 274, 740-745.	4.9	8
96	Binary Mixtures of Ionic Liquids in Aqueous Solution: Towards an Understanding of Their Salting-In/Salting-Out Phenomena. Journal of Solution Chemistry, 2019, 48, 983-991.	1.2	6
97	Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.	5.3	30
98	Understanding the effect of ionic liquids as adjuvants in the partition of biomolecules in aqueous two-phase systems formed by polymers and weak salting-out agents. Biochemical Engineering Journal, 2019, 141, 239-246.	3.6	40
99	Immobilization of Ionic Liquids, Types of Materials, and Applications. , 2019, , 1-12.		3
100	A simple approach for the determination and characterization of ternary phase diagrams of aqueous two-phase systems composed of water, polyethylene glycol and sodium carbonate. Chemical Engineering Education, 2019, 53, 112-120.	0.2	1
101	Mechanisms ruling the partition of solutes in ionic-liquid-based aqueous biphasic systems – the multiple effects of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8411-8422.	2.8	13
102	Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Physical Chemistry Chemical Physics, 2018, 20, 9838-9846.	2.8	26
103	Measurement and Modeling of Isobaric Vapor–Liquid Equilibrium of Water + Glycols. Journal of Chemical & Engineering Data, 2018, 63, 2394-2401.	1.9	13
104	Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systems. Separation and Purification Technology, 2018, 203, 178-184.	7.9	17
105	Aqueous biphasic systems in the separation of food colorants. Biochemistry and Molecular Biology Education, 2018, 46, 390-397.	1.2	8
106	Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts. Journal of Chemical Physics, 2018, 148, .	3.0	16
107	Separation of immunoglobulin G using aqueous biphasic systems composed of choliniumâ€based ionic liquids and poly(propylene glycol). Journal of Chemical Technology and Biotechnology, 2018, 93, 1931-1939.	3.2	32
108	Recovery of Nonsteroidal Anti-Inflammatory Drugs from Wastes Using Ionic-Liquid-Based Three-Phase Partitioning Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 4574-4585.	6.7	18

#	Article	IF	CITATIONS
109	An integrated process for enzymatic catalysis allowing product recovery and enzyme reuse by applying thermoreversible aqueous biphasic systems. Green Chemistry, 2018, 20, 1218-1223.	9.0	47
110	Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem, 2018, 11, 753-762.	6.8	75
111	Potential of aqueous twoâ€phase systems for the separation of levodopa from similar biomolecules. Journal of Chemical Technology and Biotechnology, 2018, 93, 1940-1947.	3.2	10
112	Hydrogen bond basicity of ionic liquids and molar entropy of hydration of salts as major descriptors in the formation of aqueous biphasic systems. Physical Chemistry Chemical Physics, 2018, 20, 14234-14241.	2.8	18
113	Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems. Journal of Chromatography A, 2018, 1559, 69-77.	3.7	27
114	Evaluation of the effect of ionic liquids as adjuvants in polymer-based aqueous biphasic systems using biomolecules as molecular probes. Separation and Purification Technology, 2018, 196, 244-253.	7.9	35
115	Ionicâ€Liquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie - International Edition, 2018, 57, 1563-1566.	13.8	82
116	Ionicâ€Liquidâ€Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions. Angewandte Chemie, 2018, 130, 1579-1582.	2.0	13
117	Aqueous Biphasic Systems Using Chiral Ionic Liquids for the Enantioseparation of Mandelic Acid Enantiomers. Solvent Extraction and Ion Exchange, 2018, 36, 617-631.	2.0	20
118	Understanding the interactions of imidazolium-based ionic liquids with cell membrane models. Physical Chemistry Chemical Physics, 2018, 20, 29764-29777.	2.8	27
119	pH Effect on the Formation of Deep-Eutectic-Solvent-Based Aqueous Two-Phase Systems. Industrial & Engineering Chemistry Research, 2018, 57, 16917-16924.	3.7	27
120	Toluene/ <i>n</i> -Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 14242-14253.	3.7	29
121	The antagonist and synergist potential of cholinium-based deep eutectic solvents. Ecotoxicology and Environmental Safety, 2018, 165, 597-602.	6.0	35
122	Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory. Chemosphere, 2018, 212, 890-897.	8.2	62
123	Enhanced separation performance of aqueous biphasic systems formed by carbohydrates and tetraalkylphosphonium- or tetraalkylammonium-based ionic liquids. Green Chemistry, 2018, 20, 2978-2983.	9.0	33
124	Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 8836-8846.	6.7	207
125	Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chemical Communications, 2018, 54, 8104-8107.	4.1	116
126	The Role of Polyfunctionality in the Formation of [Ch]Cl-Carboxylic Acid-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2018, 57, 11195-11209.	3.7	46

#	Article	IF	CITATIONS
127	Glycineâ€betaine ionic liquid analogues as novel phaseâ€forming components of aqueous biphasic systems. Biotechnology Progress, 2018, 34, 1205-1212.	2.6	16
128	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (C ₄ mimTfO) and Molecular Solvents: <i>n</i> -Alkyl Alcohols and Water. Journal of Physical Chemistry B, 2018, 122, 6017-6032.	2.6	20
129	Pioneering Use of Ionic Liquidâ€Based Aqueous Biphasic Systems as Membraneâ€Free Batteries. Advanced Science, 2018, 5, 1800576.	11.2	34
130	Aqueous Biphasic Systems Composed of Cholinium Chloride and Polymers as Effective Platforms for the Purification of Recombinant Green Fluorescent Protein. ACS Sustainable Chemistry and Engineering, 2018, 6, 9383-9393.	6.7	33
131	Understanding the fundamentals of acid-induced ionic liquid-based aqueous biphasic system. Physical Chemistry Chemical Physics, 2018, 20, 16477-16484.	2.8	12
132	Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening Model for Real Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 10724-10734.	6.7	98
133	Application of Ionic Liquids in Separation and Fractionation Processes. , 2018, , 1-29.		2
134	Exploring alternative solvents for gas processing using the soft-SAFT EoS. , 2018, , .		0
135	Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2017, 19, 1850-1854.	9.0	43
136	Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 2017, 117, 6984-7052.	47.7	689
137	Nature of the C2-methylation effect on the properties of imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 5326-5332.	2.8	22
138	Good's buffer ionic liquids as relevant phaseâ€forming components of selfâ€buffered aqueous biphasic systems. Journal of Chemical Technology and Biotechnology, 2017, 92, 2287-2299.	3.2	15
139	Alternative probe for the determination of the hydrogen-bond acidity of ionic liquids and their aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 11011-11016.	2.8	27
140	Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chemistry, 2017, 19, 2626-2635.	9.0	30
141	Temperature dependency of aqueous biphasic systems: an alternative approach for exploring the differences between Coulombic-dominated salts and ionic liquids. Chemical Communications, 2017, 53, 7298-7301.	4.1	28
142	Switchable (pH-driven) aqueous biphasic systems formed by ionic liquids as integrated production–separation platforms. Green Chemistry, 2017, 19, 2768-2773.	9.0	31
143	Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 15-21.	2.5	105
144	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research, 2017, 56, 7830-7844.	3.7	18

#	Article	IF	CITATIONS
145	Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicology and Environmental Safety, 2017, 143, 315-321.	6.0	39
146	Toward an Understanding of the Mechanisms behind the Formation of Liquid–liquid Systems formed by Two Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 3015-3019.	4.6	17
147	Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 4056-4065.	6.7	121
148	Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty Acids/Alcohols and Choline Chloride. Industrial & Engineering Chemistry Research, 2017, 56, 12192-12202.	3.7	57
149	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie - International Edition, 2017, 56, 15058-15062.	13.8	14
150	Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems. Green Chemistry, 2017, 19, 5800-5808.	9.0	18
151	Is It Possible To Create Ternary-like Aqueous Biphasic Systems with Deep Eutectic Solvents?. ACS Sustainable Chemistry and Engineering, 2017, 5, 9402-9411.	6.7	58
152	Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions. Green Chemistry, 2017, 19, 4012-4016.	9.0	23
153	Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State. Industrial & Engineering Chemistry Research, 2017, 56, 9895-9905.	3.7	9
154	Using Ionic Liquids To Tune the Performance of Aqueous Biphasic Systems Based on Pluronic L-35 for the Purification of Naringin and Rutin. ACS Sustainable Chemistry and Engineering, 2017, 5, 6409-6419.	6.7	27
155	A simple method for preparation of a novel hydrophobic ionic liquid with a per-fluoro-tert-butoxide anion. New Journal of Chemistry, 2017, 41, 47-50.	2.8	6
156	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie, 2017, 129, 15254-15258.	2.0	2
157	Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chemistry, 2016, 18, 4582-4604.	9.0	52
158	The effect of n vs. iso isomerization on the thermophysical properties of aromatic and non-aromatic ionic liquids. Fluid Phase Equilibria, 2016, 423, 190-202.	2.5	34
159	Evaluating the toxicity of biomass derived platform chemicals. Green Chemistry, 2016, 18, 4733-4742.	9.0	32
160	Are Aqueous Biphasic Systems Composed of Deep Eutectic Solvents Ternary or Quaternary Systems?. ACS Sustainable Chemistry and Engineering, 2016, 4, 2881-2886.	6.7	177
161	Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chemistry, 2016, 18, 4287-4296.	9.0	71
162	Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems. Journal of Biotechnology, 2016, 236, 166-175.	3.8	65

#	Article	IF	CITATIONS
163	A critical assessment of the mechanisms governing the formation of aqueous biphasic systems composed of protic ionic liquids and polyethylene glycol. Physical Chemistry Chemical Physics, 2016, 18, 30009-30019.	2.8	18
164	Toward the Recovery and Reuse of the ABS Phase-Forming Components. Green Chemistry and Sustainable Technology, 2016, , 285-315.	0.7	2
165	Solid–liquid equilibria of binary mixtures of fluorinated ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 25741-25750.	2.8	23
166	Fractionation of phenolic compounds from lignin depolymerisation using polymeric aqueous biphasic systems with ionic surfactants as electrolytes. Green Chemistry, 2016, 18, 5569-5579.	9.0	29
167	Densities and Viscosities of Mixtures of Two Ionic Liquids Containing a Common Cation. Journal of Chemical & Engineering Data, 2016, 61, 2828-2843.	1.9	117
168	Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicology Research, 2016, 5, 1388-1399.	2.1	33
169	Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems. Scientific Reports, 2016, 6, 20276.	3.3	72
170	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. Langmuir, 2016, 32, 6130-6139.	3.5	38
171	Solubility and solvation of monosaccharides in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 19722-19730.	2.8	18
172	Aqueous solubilities of five N-(diethylaminothiocarbonyl)benzimido derivatives at TÂ=Â298.15ÂK. Chemosphere, 2016, 160, 45-53.	8.2	5
173	Why are some cyano-based ionic liquids better glucose solvents than water?. Physical Chemistry Chemical Physics, 2016, 18, 18958-18970.	2.8	13
174	Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: insights into their liquid–liquid demixing mechanisms. Physical Chemistry Chemical Physics, 2016, 18, 20571-20582.	2.8	51
175	Densities, Viscosities, and Refractive Indexes of Good's Buffer Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 2260-2268.	1.9	13
176	Alcohols as molecular probes in ionic liquids: evidence for nanostructuration. Physical Chemistry Chemical Physics, 2016, 18, 19267-19275.	2.8	8
177	(Eco)toxicity and biodegradability of protic ionic liquids. Chemosphere, 2016, 147, 460-466.	8.2	96
178	Selection of Ionic Liquids to be Used as Separation Agents for Terpenes and Terpenoids. ACS Sustainable Chemistry and Engineering, 2016, 4, 548-556.	6.7	49
179	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	2.8	32
180	Recovery of an antidepressant from pharmaceutical wastes using ionic liquid-based aqueous biphasic systems. Green Chemistry, 2016, 18, 3527-3536.	9.0	35

#	Article	IF	CITATIONS
181	Recovery of ibuprofen from pharmaceutical wastes using ionic liquids. Green Chemistry, 2016, 18, 3749-3757.	9.0	27
182	Alkaloids as Alternative Probes To Characterize the Relative Hydrophobicity of Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 1512-1520.	6.7	48
183	Complexation and molecular modeling studies of europium(III)–gallic acid–amino acid complexes. Journal of Inorganic Biochemistry, 2016, 157, 25-33.	3.5	27
184	Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 2016, 51, 781-791.	3.7	42
185	Surface tensions of ionic liquids: Non-regular trend along the number of cyano groups. Fluid Phase Equilibria, 2016, 409, 458-465.	2.5	24
186	From waterâ€inâ€oil to oilâ€inâ€water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems. Biotechnology Progress, 2015, 31, 1473-1480.	2.6	10
187	The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chemistry, 2015, 17, 3948-3963.	9.0	156
188	Computational and Experimental Study of the Behavior of Cyano-Based Ionic Liquids in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 1567-1578.	2.6	25
189	Novel Biocompatible and Selfâ€buffering Ionic Liquids for Biopharmaceutical Applications. Chemistry - A European Journal, 2015, 21, 4781-4788.	3.3	96
190	Mutual solubilities between water and non-aromatic sulfonium-, ammonium- and phosphonium-hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 4569-4577.	2.8	58
191	One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2015, 17, 2570-2579.	9.0	46
192	Vapor–Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol. Journal of Physical Chemistry B, 2015, 119, 10287-10303.	2.6	52
193	Effect of the Methylation and N–H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8781-8792.	2.6	23
194	Hydrogen-bond acidity of ionic liquids: an extended scale. Physical Chemistry Chemical Physics, 2015, 17, 18980-18990.	2.8	99
195	Enhanced extraction of proteins using choliniumâ€based ionic liquids as phaseâ€forming components of aqueous biphasic systems. Biotechnology Journal, 2015, 10, 1457-1466.	3.5	92
196	Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry, 2015, 50, 1158-1166.	3.7	65
197	Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. Journal of Biotechnology, 2015, 206, 17-25.	3.8	75
198	Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microbial Cell Factories, 2015, 14, 14.	4.0	57

#	Article	IF	CITATIONS
199	Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, 2015, 400, 103-113.	2.5	67
200	Lipase purification using ionic liquids as adjuvants in aqueous two-phase systems. Green Chemistry, 2015, 17, 3026-3034.	9.0	78
201	Aqueous Biphasic Systems Composed of Ionic Liquids and Acetate-Based Salts: Phase Diagrams, Densities, and Viscosities. Journal of Chemical & Engineering Data, 2015, 60, 1674-1682.	1.9	36
202	Controlling the Formation of Ionicâ€Liquidâ€based Aqueous Biphasic Systems by Changing the Hydrogenâ€Bonding Ability of Polyethylene Glycol End Groups. ChemPhysChem, 2015, 16, 2219-2225.	2.1	41
203	Comprehensive study on the impact of the cation alkyl side chain length on the solubility of water in ionic liquids. Journal of Molecular Liquids, 2015, 210, 264-271.	4.9	42
204	Thermophysical Properties of Two Ammonium-Based Protic Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 703-717.	1.2	20
205	Ecotoxicity of Cholinium-Based Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 3398-3404.	6.7	119
206	Evaluating Self-buffering Ionic Liquids for Biotechnological Applications. ACS Sustainable Chemistry and Engineering, 2015, 3, 3420-3428.	6.7	46
207	Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Physical Chemistry Chemical Physics, 2015, 17, 31653-31661.	2.8	77
208	Enhancing the Antioxidant Characteristics of Phenolic Acids by Their Conversion into Cholinium Salts. ACS Sustainable Chemistry and Engineering, 2015, 3, 2558-2565.	6.7	54
209	Thermophysical Properties of Glycols and Glymes. Journal of Chemical & Engineering Data, 2015, 60, 3721-3737.	1.9	62
210	Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory. Physical Chemistry Chemical Physics, 2015, 17, 32044-32052.	2.8	22
211	Ionic liquidâ€based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds. Biotechnology Progress, 2015, 31, 70-77.	2.6	35
212	Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains. Journal of Chemical Physics, 2014, 141, 134502.	3.0	41
213	Ionic liquid recovery alternatives in ionic liquidâ€based threeâ€phase partitioning (ILTPP). AICHE Journal, 2014, 60, 3577-3586.	3.6	21
214	Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 2014, 102, 48-54.	6.0	185
215	Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 6593.	2.8	218
216	Vapor–Liquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 3737-3748.	3.7	82

#	Article	IF	CITATIONS
217	Cation Alkyl Side Chain Length and Symmetry Effects on the Surface Tension of Ionic Liquids. Langmuir, 2014, 30, 6408-6418.	3.5	75
218	Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations. Journal of Chemical Physics, 2014, 140, 064505.	3.0	127
219	Lipidic Protic Ionic Liquid Crystals. ACS Sustainable Chemistry and Engineering, 2014, 2, 672-682.	6.7	43
220	The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour. Physical Chemistry Chemical Physics, 2014, 16, 21340-21348.	2.8	30
221	Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chemistry, 2014, 16, 3149-3159.	9.0	94
222	Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chemistry, 2014, 16, 259-268.	9.0	89
223	"Washing-out―ionic liquids from polyethylene glycol to form aqueous biphasic systems. Physical Chemistry Chemical Physics, 2014, 16, 2271.	2.8	24
224	Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilibria, 2014, 381, 36-45.	2.5	94
225	Evaluation of the Conductor-like Screening Model for Real Solvents for the Prediction of the Water Activity Coefficient at Infinite Dilution in Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 12466-12475.	3.7	50
226	Effect of the Cation on the Interactions between Alkyl Methyl Imidazolium Chloride Ionic Liquids and Water. Journal of Physical Chemistry B, 2014, 118, 10503-10514.	2.6	58
227	Generating Ionic Liquids from Ionic Solids: An Investigation of the Melting Behavior of Binary Mixtures of Ionic Liquids. Crystal Growth and Design, 2014, 14, 4270-4277.	3.0	38
228	The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities. Physical Chemistry Chemical Physics, 2014, 16, 19952.	2.8	64
229	Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations, Journal of Chemical Physics, 2014, 140, 244307	3.0	22
230	Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 2014, 16, 4786-4815.	9.0	357
231	Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicology and Environmental Safety, 2014, 108, 302-310.	6.0	83
232	Probing the Interactions between Ionic Liquids and Water: Experimental and Quantum Chemical Approach. Journal of Physical Chemistry B, 2014, 118, 1848-1860.	2.6	111
233	Designing ionic liquids for absorptive cooling. Green Chemistry, 2014, 16, 3741.	9.0	44
234	Effect of Polyvalent Ions in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2014, 118, 297-308.	2.6	22

#	Article	IF	CITATIONS
235	Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based salts. Physical Chemistry Chemical Physics, 2014, 16, 5723.	2.8	90
236	Evidence for the Interactions Occurring Between Ionic Liquids and Tetraethylene Glycol in Binary Mixtures and Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2014, 118, 4615-4629.	2.6	18
237	Enhancing the adsorption of ionic liquids onto activated carbon by the addition of inorganic salts. Chemical Engineering Journal, 2014, 252, 305-310.	12.7	42
238	Trends and demands in the solid–liquid equilibrium of lipidic mixtures. RSC Advances, 2014, 4, 31840-31850.	3.6	34
239	Speed of Sound, Density, and Derivative Properties of Methyl Oleate and Methyl Linoleate under High Pressure. Journal of Chemical & Engineering Data, 2013, 58, 2345-2354.	1.9	25
240	Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials, 2013, 261, 106-113.	12.4	125
241	Alkylimidazolium Based Ionic Liquids: Impact of Cation Symmetry on Their Nanoscale Structural Organization. Journal of Physical Chemistry B, 2013, 117, 10889-10897.	2.6	207
242	Overview of the Excess Enthalpies of the Binary Mixtures Composed of Molecular Solvents and Ionic Liquids and Their Modeling Using COSMO-RS. Industrial & Engineering Chemistry Research, 2013, 52, 13862-13874.	3.7	74
243	Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme and Microbial Technology, 2013, 52, 141-150.	3.2	70
244	Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure. Journal of Chemical & Engineering Data, 2013, 58, 1371-1377.	1.9	67
245	Systematic Study of the Thermophysical Properties of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions. Journal of Physical Chemistry B, 2013, 117, 10271-10283.	2.6	195
246	High Pressure Density and Speed of Sound in Two Biodiesel Fuels. Journal of Chemical & Engineering Data, 2013, 58, 3392-3398.	1.9	31
247	Composition and structural effects on the adsorption of ionic liquids onto activated carbon. Environmental Sciences: Processes and Impacts, 2013, 15, 1752.	3.5	32
248	Evidence of nanostructuration from the heat capacities of the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid series. Journal of Chemical Physics, 2013, 139, 104502.	3.0	35
249	Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 507-516.	3.0	60
250	On the chemical reactions of carbon dioxide isoelectronic molecules CS2 and OCS with 1-butyl-3-methylimidazolium acetate. Chemical Communications, 2013, 49, 11083.	4.1	17
251	Combining ionic liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic systems. Physical Chemistry Chemical Physics, 2013, 15, 19580.	2.8	83
252	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Advances, 2013, 3, 1835-1843.	3.6	138

#	Article	IF	CITATIONS
253	Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnology Progress, 2013, 29, 645-654.	2.6	50
254	Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustainable Chemistry and Engineering, 2013, 1, 393-402.	6.7	77
255	Enhanced extraction of caffeine from guaranÃ; seeds using aqueous solutions of ionic liquids. Green Chemistry, 2013, 15, 2002.	9.0	127
256	Application of Wada's Group Contribution Method to the Prediction of the Speed of Sound of Biodiesel. Energy & Fuels, 2013, 27, 1365-1370.	5.1	22
257	Salting-in with a Salting-out Agent: Explaining the Cation Specific Effects on the Aqueous Solubility of Amino Acids. Journal of Physical Chemistry B, 2013, 117, 6116-6128.	2.6	85
258	Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology, 2013, 22, 1-12.	2.4	230
259	Density and Viscosity Data for Binary Mixtures of 1-Alkyl-3-methylimidazolium Alkylsulfates + Water. Journal of Chemical & Engineering Data, 2012, 57, 3473-3482.	1.9	46
260	Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Advances, 2012, 2, 7322.	3.6	129
261	Ionic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids. Analytical Methods, 2012, 4, 2664.	2.7	61
262	Partition Coefficients of Alkaloids in Biphasic Ionic-Liquid-Aqueous Systems and their Dependence on the Hofmeister Series. Separation Science and Technology, 2012, 47, 284-291.	2.5	33
263	Measurement and Prediction of Biodiesel Volatility. Energy & amp; Fuels, 2012, 26, 3048-3053.	5.1	31
264	CO ₂ in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. Journal of Physical Chemistry A, 2012, 116, 4890-4901.	2.5	100
265	Ionic liquids microemulsions: the key to Candida antarctica lipase B superactivity. Green Chemistry, 2012, 14, 1620.	9.0	62
266	Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicology and Environmental Safety, 2012, 76, 162-168.	6.0	254
267	Increased significance of food wastes: Selective recovery of added-value compounds. Food Chemistry, 2012, 135, 2453-2461.	8.2	59
268	Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Advances, 2012, 2, 10882.	3.6	73
269	Thermophysical Properties of Five Acetate-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 3005-3013.	1.9	143
270	On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide. Chemical Communications, 2012, 48, 1245-1247.	4.1	94

#	Article	IF	CITATIONS
271	Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 2012, 41, 4966.	38.1	726
272	Molecular Dynamics Simulation Studies of the Interactions between Ionic Liquids and Amino Acids in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 1831-1842.	2.6	64
273	Impact of Self-Aggregation on the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2012, 116, 7660-7668.	2.6	54
274	Ionic-Liquid-Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Anion Effect. Journal of Chemical & Engineering Data, 2012, 57, 507-512.	1.9	64
275	Cation Symmetry effect on the Volatility of Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 10922-10927.	2.6	76
276	Simple screening method to identify toxic/non-toxic ionic liquids: Agar diffusion test adaptation. Ecotoxicology and Environmental Safety, 2012, 83, 55-62.	6.0	89
277	Overview of the Liquid–Liquid Equilibria of Ternary Systems Composed of Ionic Liquid and Aromatic and Aliphatic Hydrocarbons, and Their Modeling by COSMO-RS. Industrial & Engineering Chemistry Research, 2012, 51, 3483-3507.	3.7	169
278	The Origin of the LCST on the Liquid–Liquid Equilibrium of Thiophene with Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 5985-5992.	2.6	16
279	Role of the Hofmeister Series in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2012, 116, 7252-7258.	2.6	181
280	Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews, 2012, 41, 829-868.	38.1	375
281	Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B. World Journal of Microbiology and Biotechnology, 2012, 28, 2303-2310.	3.6	51
282	Insight into the Interactions That Control the Phase Behaviour of New Aqueous Biphasic Systems Composed of Polyethylene Glycol Polymers and Ionic Liquids. Chemistry - A European Journal, 2012, 18, 1831-1839.	3.3	157
283	Critical Assessment of the Formation of Ionic-Liquid-Based Aqueous Two-Phase Systems in Acidic Media. Journal of Physical Chemistry B, 2011, 115, 11145-11153.	2.6	85
284	Measurement and Prediction of Biodiesel Surface Tensions. Energy & amp; Fuels, 2011, 25, 4811-4817.	5.1	45
285	Thermophysical Characterization of Ionic Liquids Able To Dissolve Biomass. Journal of Chemical & Engineering Data, 2011, 56, 4813-4822.	1.9	295
286	lonic Liquid Based Aqueous Biphasic Systems with Controlled pH: The Ionic Liquid Cation Effect. Journal of Chemical & Engineering Data, 2011, 56, 4253-4260.	1.9	96
287	High-Accuracy Vapor Pressure Data of the Extended [C _{<i>n</i>} C ₁ im][Ntf ₂] Ionic Liquid Series: Trend Changes and Structural Shifts. Journal of Physical Chemistry B, 2011, 115, 10919-10926.	2.6	199
288	Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids. Green Chemistry, 2011, 13, 1517.	9.0	129

#	Article	IF	CITATIONS
289	The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities. Energy and Environmental Science, 2011, 4, 4614.	30.8	99
290	Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters. Journal of Physical Chemistry B, 2011, 115, 12879-12888.	2.6	38
291	Evaluation of Cationâ^'Anion Interaction Strength in Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 4033-4041.	2.6	227
292	Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 2011, 13, 3173.	9.0	124
293	Aqueous biphasic systems composed of a water-stable ionic liquid + carbohydrates and their applications. Green Chemistry, 2011, 13, 1536.	9.0	185
294	Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2011, 13, 340.	9.0	125
295	Design of ionic liquids for lipase purification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2679-2687.	2.3	91
296	Aqueous solubility, effects of salts on aqueous solubility, and partitioning behavior of hexafluorobenzene: Experimental results and COSMO-RS predictions. Chemosphere, 2011, 84, 415-422.	8.2	17
297	Predictive Group Contribution Models for the Thermophysical Properties of Ionic Liquids. ACS Symposium Series, 2010, , 385-401.	0.5	7
298	Solubility of Adamantane in Phosphonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2010, 55, 662-665.	1.9	23
299	Measurement and Modeling of Biodiesel Cold-Flow Properties. Energy & amp; Fuels, 2010, 24, 2667-2674.	5.1	38
300	Toward an Understanding of the Aqueous Solubility of Amino Acids in the Presence of Salts: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 16450-16459.	2.6	34
301	Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems. Green Chemistry, 2010, 12, 1661.	9.0	168
302	Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2010, 55, 645-652.	1.9	216
303	¹ H NMR and Molecular Dynamics Evidence for an Unexpected Interaction on the Origin of Salting-In/Salting-Out Phenomena. Journal of Physical Chemistry B, 2010, 114, 2004-2014.	2.6	116
304	Characterization of Libyan Waxy Crude Oils. Energy & Fuels, 2010, 24, 3101-3107.	5.1	36
305	Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 3744-3749.	2.5	551
306	Evaluation of Methods for the Extraction and Characterization of Waxes from Crude Oils. Energy & Fuels, 2010, 24, 1837-1843.	5.1	27

#	Article	lF	CITATIONS
307	Phase Equilibria of Ester + Alcohol Systems and Their Description with the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2010, 49, 3452-3458.	3.7	44
308	Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquatic Toxicology, 2010, 96, 290-297.	4.0	122
309	Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS. Chemosphere, 2010, 79, 821-829.	8.2	30
310	High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chemistry, 2010, 12, 1715.	9.0	213
311	Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems. International Journal of Molecular Sciences, 2010, 11, 1777-1791.	4.1	181
312	Mutual Solubility of Water and Structural/Positional Isomers of <i>N</i> -Alkylpyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 15925-15934.	2.6	74
313	Biosurfactants from Yeasts: Characteristics, Production and Application. Advances in Experimental Medicine and Biology, 2010, 672, 236-249.	1.6	70
314	On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents. Journal of Physical Chemistry Letters, 2010, 1, 774-780.	4.6	96
315	Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AICHE Journal, 2009, 55, 1274-1290.	3.6	274
316	Gasâ€phase dissociation of ionic liquid aggregates studied by electrospray ionisation mass spectrometry and energyâ€variable collision induced dissociation. Journal of Mass Spectrometry, 2009, 44, 144-150.	1.6	33
317	The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms. Chemistry and Physics of Lipids, 2009, 157, 40-50.	3.2	54
318	The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids. Chemistry and Physics of Lipids, 2009, 160, 85-97.	3.2	75
319	Towards an Understanding of the Mutual Solubilities of Water and Hydrophobic Ionic Liquids in the Presence of Salts: The Anion Effect. Journal of Physical Chemistry B, 2009, 113, 2815-2825.	2.6	80
320	Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2009, 113, 5194-5199.	2.6	237
321	Specific Solvation Interactions of CO ₂ on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. Journal of Physical Chemistry B, 2009, 113, 6803-6812.	2.6	201
322	Ion Specific Effects on the Mutual Solubilities of Water and Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 202-211.	2.6	175
323	On the Interactions between Amino Acids and Ionic Liquids in Aqueous Media. Journal of Physical Chemistry B, 2009, 113, 13971-13979.	2.6	68
324	Evaluation of Anion Influence on the Formation and Extraction Capacity of Ionic-Liquid-Based Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2009, 113, 9304-9310.	2.6	295

#	Article	IF	CITATIONS
325	Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology and Bioengineering, 2008, 99, 588-598.	3.3	65
326	Mutual Solubilities of Water and the [C <i>_n</i> mim][Tf ₂ N] Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 1604-1610.	2.6	325
327	Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 805-811.	1.9	233
328	Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids. Journal of Chemical & amp; Engineering Data, 2008, 53, 1914-1921.	1.9	130
329	Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl]. Journal of Physical Chemistry B, 2008, 112, 3380-3389.	2.6	127
330	Solubility of Water in Tetradecyltrihexylphosphonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 2378-2382.	1.9	114
331	Surface Tensions for the 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 1346-1350.	1.9	199
332	Viscosities of Liquid Fluorocompounds. Journal of Chemical & Engineering Data, 2008, 53, 538-542.	1.9	31
333	High-Pressure Solubility Data of Methane in Aniline and Aqueous Aniline Systems. Journal of Chemical & Engineering Data, 2007, 52, 1100-1102.	1.9	18
334	<i>P</i> ï≺i>T Measurements of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1881-1888.	1.9	277
335	Ionic Liquids:Â First Direct Determination of their Cohesive Energy. Journal of the American Chemical Society, 2007, 129, 284-285.	13.7	295
336	High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 80-88.	1.9	381
337	Modeling the Phase Equilibria of Poly(ethylene glycol) Binary Mixtures with soft-SAFT EoS. Industrial & Engineering Chemistry Research, 2007, 46, 4678-4685.	3.7	19
338	Solidâ^'Liquid Equilibria under High Pressure of Eight Pure n-Alkylcyclohexanes. Journal of Chemical & Engineering Data, 2007, 52, 1250-1254.	1.9	8
339	Salting-Out Effects in Aqueous Ionic Liquid Solutions: Cloud-Point Temperature Shiftsâ€. Journal of Physical Chemistry B, 2007, 111, 4737-4741.	2.6	97
340	Modeling the Liquidâ^'Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2007, 46, 1415-1420.	3.7	23
341	Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 2007, 314, 621-630.	9.4	406
342	Mutual Solubilities of Water and Hydrophobic Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 13082-13089.	2.6	374

#	Article	IF	CITATIONS
343	Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World Journal of Microbiology and Biotechnology, 2007, 23, 339-344.	3.6	21
344	Surface Tension of Liquid Fluorocompounds. Journal of Chemical & Engineering Data, 2006, 51, 1820-1824.	1.9	61
345	Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. Macromolecules, 2006, 39, 4240-4246.	4.8	38
346	Vaporâ^'Liquid Equilibrium of Carbon Dioxideâ^'Perfluoroalkane Mixtures:  Experimental Data and SAFT Modeling. Industrial & Engineering Chemistry Research, 2006, 45, 2341-2350.	3.7	107
347	Reliable Wax Predictions for Flow Assurance. Energy & amp; Fuels, 2006, 20, 1081-1088.	5.1	63
348	Water Solubility in Linear Fluoroalkanes Used in Blood Substitute Formulations. Journal of Physical Chemistry B, 2006, 110, 22923-22929.	2.6	34
349	Modeling high-pressure wax formation in petroleum fluids. AICHE Journal, 2005, 51, 2089-2097.	3.6	21
350	Aging mechanisms of perfluorocarbon emulsions using image analysis. Journal of Colloid and Interface Science, 2005, 286, 224-232.	9.4	69
351	Phase Equilibria of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 7027-7037.	3.7	54
352	Solubility of Hexafluorobenzene in Aqueous Salt Solutions from (280 to 340) K. Journal of Chemical & Engineering Data, 2005, 50, 237-242.	1.9	29
353	Densities and Vapor Pressures of Highly Fluorinated Compounds. Journal of Chemical & Engineering Data, 2005, 50, 1328-1333.	1.9	64
354	The Limitations of the Cloud Point Measurement Techniques and the Influence of the Oil Composition on Its Detection. Petroleum Science and Technology, 2005, 23, 1113-1128.	1.5	86
355	Surface Tension of Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane. Journal of Chemical & Engineering Data, 2005, 50, 1043-1046.	1.9	41
356	Dynamic rheological analysis of the gelation behaviour of waxy crude oils. Rheologica Acta, 2004, 43, 433-441.	2.4	84
357	SAFT Modeling of the Solubility of Gases in Perfluoroalkanes. Journal of Physical Chemistry B, 2004, 108, 1450-1457.	2.6	75
358	Evidence for the Aging of Wax Deposits in Crude Oils by Ostwald Ripening. Petroleum Science and Technology, 2003, 21, 381-391.	1.5	46
359	Cloud Points: Can We Measure or Model Them?. Petroleum Science and Technology, 2003, 21, 345-358.	1.5	66
360	Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. Journal of Chemical & Engineering Data, 2002, 47, 1442-1445.	1.9	137

#	Article	IF	CITATIONS
361	Low-Pressure Modeling of Wax Formation in Crude Oils. Energy & amp; Fuels, 2001, 15, 1454-1460.	5.1	66
362	Solidâ^'Liquidâ^'Vapor Phase Boundary of a North Sea Waxy Crude:  Measurement and Modeling. Energy & Fuels, 2001, 15, 730-735.	5.1	63
363	A Thermodynamic Model for Predicting Wax Formation in Jet and Diesel Fuels. Energy & Fuels, 2000, 14, 625-631.	5.1	47
364	Predictive UNIQUAC:Â A New Model for the Description of Multiphase Solidâ^'Liquid Equilibria in Complex Hydrocarbon Mixtures. Industrial & Engineering Chemistry Research, 1998, 37, 4870-4875.	3.7	110
365	Experimental Measurements and Thermodynamic Modeling of Paraffinic Wax Formation in Undercooled Solutions. Industrial & Engineering Chemistry Research, 1997, 36, 4977-4983.	3.7	70
366	Measuring the amount of crystallinity in solutions using DSC. Canadian Journal of Chemical Engineering, 1997, 75, 1075-1079.	1.7	7
367	Predictive Local Composition Models for Solid/Liquid Equilibrium inn-Alkane Systems:Â Wilson Equation for Multicomponent Systems. Industrial & Engineering Chemistry Research, 1996, 35, 918-925.	3.7	76