
Sandeep Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10844087/publications.pdf Version: 2024-02-01

SANDEED YADAV

#	Article	IF	CITATIONS
1	Evaluating a Modified High Purity Polysorbate 20 Designed to Reduce the Risk of Free Fatty Acid Particle Formation. Pharmaceutical Research, 2021, 38, 1563-1583.	3.5	14
2	Evaluation of Super Refinedâ,"¢ Polysorbate 20 With Respect to Polysorbate Degradation, Particle Formation and Protein Stability. Journal of Pharmaceutical Sciences, 2020, 109, 2986-2995.	3.3	22
3	Dual Effect of Histidine on Polysorbate 20 Stability: Mechanistic Studies. Pharmaceutical Research, 2018, 35, 33.	3.5	31
4	Novel markers to track oxidative polysorbate degradation in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 2018, 157, 201-207.	2.8	25
5	Considerations for the Use of Polysorbates in Biopharmaceuticals. Pharmaceutical Research, 2018, 35, 148.	3.5	82
6	The Effect of Low Ionic Strength on Diffusion and Viscosity of Monoclonal Antibodies. Molecular Pharmaceutics, 2018, 15, 3133-3142.	4.6	27
7	Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions. Pharmaceutical Research, 2017, 34, 836-846.	3.5	6
8	Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin. Pharmaceutical Research, 2017, 34, 2250-2259.	3.5	8
9	Degradation Mechanisms of Polysorbate 20 Differentiated by 18O-labeling and Mass Spectrometry. Pharmaceutical Research, 2017, 34, 84-100.	3.5	48
10	Analytical Ultracentrifugation and Its Role in Development and Research of Therapeutical Proteins. Methods in Enzymology, 2015, 562, 441-476.	1.0	20
11	Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism. Molecular Pharmaceutics, 2015, 12, 3805-3815.	4.6	108
12	Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions. Molecular Pharmaceutics, 2015, 12, 3896-3907.	4.6	53
13	Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations. Molecular Pharmaceutics, 2015, 12, 3792-3804.	4.6	84
14	Dipole-Dipole Interaction in Antibody Solutions: Correlation with Viscosity Behavior at High Concentration. Pharmaceutical Research, 2014, 31, 2549-2558.	3.5	55
15	Comparison of Binding Characteristics and In Vitro Activities of Three Inhibitors of Vascular Endothelial Growth Factor A. Molecular Pharmaceutics, 2014, 11, 3421-3430.	4.6	73
16	Assessment and significance of protein–protein interactions during development of protein biopharmaceuticals. Biophysical Reviews, 2013, 5, 121-136.	3.2	16
17	Biophysical Analysis in Support of Development of Protein Pharmaceuticals. , 2013, , 173-204.		2
18	Monoclonal Antibody Self-Association, Cluster Formation, and Rheology at High Concentrations. Journal of Physical Chemistry B, 2013, 117, 6373-6384.	2.6	135

SANDEEP YADAV

#	Article	IF	CITATIONS
19	Compatibility and Stability of Pertuzumab and Trastuzumab Admixtures in i.v. Infusion Bags for Coadministration. Journal of Pharmaceutical Sciences, 2013, 102, 794-812.	3.3	51
20	The Role of Amino Acid Sequence in the Self-Association of Therapeutic Monoclonal Antibodies: Insights from Coarse-Grained Modeling. Journal of Physical Chemistry B, 2013, 117, 1269-1279.	2.6	76
21	Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter. Biophysical Journal, 2012, 103, 69-78.	0.5	276
22	The Influence of Charge Distribution on Self-Association and Viscosity Behavior of Monoclonal Antibody Solutions. Molecular Pharmaceutics, 2012, 9, 791-802.	4.6	226
23	Determination of the dipole moments of RNAse SA wild type and a basic mutant. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1041-1052.	2.6	8
24	Viscosity Behavior of High-Concentration Monoclonal Antibody Solutions: Correlation with Interaction Parameter and Electroviscous Effects. Journal of Pharmaceutical Sciences, 2012, 101, 998-1011.	3.3	143
25	Establishing a Link Between Amino Acid Sequences and Self-Associating and Viscoelastic Behavior of Two Closely Related Monoclonal Antibodies. Pharmaceutical Research, 2011, 28, 1750-1764.	3.5	108
26	Viscosity Analysis of High Concentration Bovine Serum Albumin Aqueous Solutions. Pharmaceutical Research, 2011, 28, 1973-1983.	3.5	106
27	Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Analytical Biochemistry, 2011, 411, 292-296.	2.4	72
28	Specific interactions in high concentration antibody solutions resulting in high viscosity. Journal of Pharmaceutical Sciences, 2010, 99, 1152-1168.	3.3	216
29	Factors Affecting the Viscosity in High Concentration Solutions of Different Monoclonal Antibodies. Journal of Pharmaceutical Sciences, 2010, 99, 4812-4829.	3.3	200