Jeremy F Laliberté

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1084384/publications.pdf

Version: 2024-02-01

9

#	Article	IF	CITATIONS
1	Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 2019, 26, 138-146.	3.0	147
2	Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide. Composites Part B: Engineering, 2019, 164, 1-9.	12.0	119
3	Applications of fiber-metal laminates. Polymer Composites, 2000, 21, 558-567.	4.6	69
4	Investigation of bolted/bonded composite joint behaviour using design of experiments. Composite Structures, 2017, 170, 192-201.	5.8	69
5	Post-impact fatigue damage growth in fiber?metal laminates. International Journal of Fatigue, 2002, 24, 249-256.	5.7	56
6	Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate. Composite Structures, 2014, 111, 566-579.	5.8	49
7	Impact Damage in Fiber Metal Laminates, Part 1: Experiment. AIAA Journal, 2005, 43, 2445-2453.	2.6	48
8	Effects of composite lamina properties on fundamental Lamb wave mode dispersion characteristics. Composite Structures, 2015, 124, 236-252.	5.8	31
9	Realâ€time compensation of magnetic data acquired by a singleâ€rotor unmanned aircraft system. Geophysical Prospecting, 2019, 67, 1637-1651.	1.9	30
10	Simultaneous reinforcement of matrix and fibers for enhancement of mechanical properties of grapheneâ€modified laminated composites. Polymer Composites, 2019, 40, E1732-E1745.	4.6	26
11	An experimental study on the mechanical behaviour of bonded and hybrid bonded-bolted composite joints using digital image correlation (DIC) technique. Composite Structures, 2021, 276, 114544.	5.8	19
12	Nondestructive evaluation methods for damage assessment in fiber-metal laminates. Polymer Composites, 2000, 21, 568-575.	4.6	17
13	Magnetic interference testing method for an electric fixed-wing unmanned aircraft system (UAS). Journal of Unmanned Vehicle Systems, 2018, 6, 177-194.	1.2	16
14	Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10, 101-112.	1.6	16
15	Historical development of geometrical modelling of textiles reinforcements for polymer composites: A review. Journal of Industrial Textiles, 2016, 45, 556-584.	2.4	14
16	UAV PHOTGRAMMETRIC WORKFLOWS: A BEST PRACTICE GUIDELINE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W5, 237-244.	0.2	14
17	Designing and building an unmanned aircraft system for aeromagnetic surveying. , 2010, , .		13

18 <title>Strain monitoring and fatigue life of Bragg grating fiber optic sensors</title>., 1999, 3670, 82.

Jeremy F Laliberté

#	Article	IF	CITATIONS
19	Significant Fatigue Life Enhancement in Multiscale Doubly-Modified Fiber/Epoxy Nanocomposites with Graphene Nanoplatelets and Reduced-Graphene Oxide. Polymers, 2020, 12, 2135.	4.5	9
20	Design and Manufacturing of Biologically Inspired Micro Aerial Vehicle Wings Using Rapid Prototyping. International Journal of Micro Air Vehicles, 2013, 5, 15-38.	1.3	8
21	Secured Multi-Dimensional Robust Optimization Model for Remotely Piloted Aircraft System (RPAS) Delivery Network Based on the SORA Standard. Designs, 2022, 6, 55.	2.4	8
22	Inversion of Magnetic Data Acquired with a Rotary-Wing Unmanned Aircraft System for Gold Exploration. Pure and Applied Geophysics, 2021, 178, 501-516.	1.9	7
23	Design and manufacture of propellers for small unmanned aerial vehicles. Journal of Unmanned Vehicle Systems, 2016, 4, 228-245.	1.2	5
24	Quantitative analysis of fatigue cracks in laminated carbon fibre-reinforced polymer composites using micro-computed tomography. Journal of Composite Materials, 2016, 50, 2523-2540.	2.4	5
25	Mode I Fracture Toughness of Aerospace Polymer Composites Exposed to Fresh and Salt Water. Chemical and Materials Engineering, 2013, 1, 8-17.	0.7	3
26	Morphing Winglet Design for Aerodynamic Performance Optimization of the CRJ-700 Aircraft. Part 1 – Structural Design. INCAS Bulletin, 2021, 13, 113-128.	0.6	3
27	In situ measurement of vacuum consolidation of commingled thermoplastic composites using a non-contact displacement sensor. Journal of Reinforced Plastics and Composites, 2014, 33, 2046-2063.	3.1	2
28	An Investigation of the Failure Mechanisms of a Polymer Matrix Composite Crew Oar. Journal of Failure Analysis and Prevention, 2019, 19, 716-729.	0.9	2
29	Comparison Between Ground, Helicopter, and Unmanned Aircraft System Magnetic Datasets: A Case Study from the Abitibi Greenstone Belt, Canada. Pure and Applied Geophysics, 0, , 1.	1.9	2
30	GeoSurv II Unmanned Aerial Vehicle: A major undergraduate project with. Proceedings of the Canadian Engineering Education Association (CEEA), 2011, , .	0.2	1
31	Structural Design and Control of a Morphing Winglet to optimize the Aerodynamic Performance of the CRJ-700 Aircraft. Part 2 – Control. INCAS Bulletin, 2021, 13, 129-137.	0.6	1
32	A higher-order theory for crack growth in fiber-metal laminates under generalized plane-stress conditions. Journal of Mechanics of Materials and Structures, 2006, 1, 431-445.	0.6	0
33	In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities. Materials Performance and Characterization, 2016, 5, MPC20150021.	0.3	0