Lawrence Rajendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10841114/publications.pdf

Version: 2024-02-01

44 papers

10,242 citations

172457 29 h-index 254184 43 g-index

52 all docs 52 docs citations

times ranked

52

16909 citing authors

#	Article	IF	CITATIONS
1	Neurological and mental health consequences of COVID-19: potential implications for well-being and labour force. Brain Communications, 2021, 3, fcab012.	3.3	17
2	Detection of Synaptic Proteins in Microglia by Flow Cytometry. Frontiers in Molecular Neuroscience, 2020, 13, 149.	2.9	20
3	Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Frontiers in Psychiatry, 2020, 11 , 789.	2.6	14
4	The Wide World of Coacervates: From the Sea to Neurodegeneration. Trends in Biochemical Sciences, 2020, 45, 706-717.	7.5	43
5	Exploration of Plasma Lipids in Mild Cognitive Impairment due to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 1117-1127.	2.6	5
6	Effects of Anthocyanin Supplementation on Serum Lipids, Glucose, Markers of Inflammation and Cognition in Adults With Increased Risk of Dementia – A Pilot Study. Frontiers in Genetics, 2019, 10, 536.	2.3	14
7	Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia. Stem Cells, 2019, 37, 724-730.	3.2	36
8	Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience, 2019, 405, 148-157.	2.3	268
9	Microglia-Mediated Synapse Loss in Alzheimer's Disease. Journal of Neuroscience, 2018, 38, 2911-2919.	3.6	228
10	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	14.3	436
11	The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Reports, 2017, 19, 1967-1976.	6.4	40
12	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	8.1	171
13	Specific Inhibition of \hat{l}^2 -Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Reports, 2016, 14, 2127-2141.	6.4	87
14	miRâ€186 in Alzheimer's disease: a big hope for a small RNA?. Journal of Neurochemistry, 2016, 137, 308-311.	3.9	13
15	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
16	Function, therapeutic potential and cell biology of <scp>BACE</scp> proteases: current status and future prospects. Journal of Neurochemistry, 2014, 130, 4-28.	3.9	269
17	Emerging Roles of Extracellular Vesicles in the Nervous System. Journal of Neuroscience, 2014, 34, 15482-15489.	3.6	219
18	A Paired RNAi and RabGAP Overexpression Screen Identifies Rabl1 as a Regulator of \hat{l}^2 -Amyloid Production. Cell Reports, 2013, 5, 1536-1551.	6.4	120

#	Article	IF	Citations
19	A Function for EHD Family Proteins in Unidirectional Retrograde Dendritic Transport of BACE1 and Alzheimer's Disease Ál² Production. Cell Reports, 2013, 5, 1552-1563.	6.4	65
20	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5 . 6	1,064
21	Role of genes linked to sporadic Alzheimer's disease risk in the production of β-amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15307-15311.	7.1	80
22	Lipid-anchored drugs for delivery into subcellular compartments. Trends in Pharmacological Sciences, 2012, 33, 215-222.	8.7	21
23	Lipid raft redistribution and morphological cell polarization are separable processes providing a basis for hematopoietic stem and progenitor cell migration. International Journal of Biochemistry and Cell Biology, 2012, 44, 1121-1132.	2.8	12
24	Retromers in Alzheimer's Disease. Neurodegenerative Diseases, 2012, 10, 116-121.	1.4	26
25	Membrane Trafficking Pathways in <scp>Alzheimer</scp> 's Disease. Traffic, 2012, 13, 759-770.	2.7	181
26	Membrane Anchored and Lipid Raft Targeted \hat{l}^2 -Secretase Inhibitors for Alzheimer's Disease Therapy. Journal of Alzheimer's Disease, 2011, 24, 143-152.	2.6	18
27	Subcellular targeting strategies for drug design and delivery. Nature Reviews Drug Discovery, 2010, 9, 29-42.	46.4	612
28	Cellular basis of Alzheimer′s disease. Annals of Indian Academy of Neurology, 2010, 13, 89.	0.5	14
29	Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. Journal of Cell Science, 2009, 122, 3703-3714.	2.0	112
30	The Transcellular Spread of Cytosolic Amyloids, Prions, and Prionoids. Neuron, 2009, 64, 783-790.	8.1	414
31	Membrane Trafficking and Targeting in Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease, 2009, , 103-113.	0.1	1
32	Flotillins Are Involved in the Polarization of Primitive and Mature Hematopoietic Cells. PLoS ONE, 2009, 4, e8290.	2.5	42
33	Efficient Inhibition of the Alzheimer's Disease β-Secretase by Membrane Targeting. Science, 2008, 320, 520-523.	12.6	254
34	Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 2008, 319, 1244-1247.	12.6	2,800
35	Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons. Journal of Neuroscience, 2008, 28, 2874-2882.	3.6	180
36	Increased Aβ Production Leads to Intracellular Accumulation of Aβ in Flotillin-1-Positive Endosomes. Neurodegenerative Diseases, 2007, 4, 164-170.	1.4	44

#	Article	IF	CITATIONS
37	Raft association and lipid droplet targeting of flotillins are independent of caveolin. Biological Chemistry, 2007, 388, 307-14.	2.5	40
38	Alzheimer's disease \hat{l}^2 -amyloid peptides are released in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11172-11177.	7.1	1,133
39	Lipid rafts and membrane dynamics. Journal of Cell Science, 2005, 118, 1099-1102.	2.0	519
40	Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons. Molecular and Cellular Neurosciences, 2003, 22, 544-554.	2.2	24
41	Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8241-8246.	7.1	131
42	The Lipid Raft Microdomain-Associated Protein Reggie-1/ Flotillin-2 is Expressed in Human B Cells and Localized at the Plasma Membrane and Centrosome in PBMCs. Immunobiology, 2002, 205, 108-119.	1.9	52
43	γ-Secretase regulates the α-secretase cleavage of the Alzheimer's disease, amyloid precursor protein. Matters, 0, , .	1.0	2
44	\hat{I}^3 -Secretase Activating Protein (GSAP) does not specifically affect the \hat{I}^3 -Secretase processing of APP. Matters, 0, , .	1.0	1