Lawrence Rajendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10841114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 2008, 319, 1244-1247.	12.6	2,800
2	Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11172-11177.	7.1	1,133
3	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
4	Subcellular targeting strategies for drug design and delivery. Nature Reviews Drug Discovery, 2010, 9, 29-42.	46.4	612
5	Lipid rafts and membrane dynamics. Journal of Cell Science, 2005, 118, 1099-1102.	2.0	519
6	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	14.3	436
7	The Transcellular Spread of Cytosolic Amyloids, Prions, and Prionoids. Neuron, 2009, 64, 783-790.	8.1	414
8	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
9	Function, therapeutic potential and cell biology of <scp>BACE</scp> proteases: current status and future prospects. Journal of Neurochemistry, 2014, 130, 4-28.	3.9	269
10	Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience, 2019, 405, 148-157.	2.3	268
11	Efficient Inhibition of the Alzheimer's Disease β-Secretase by Membrane Targeting. Science, 2008, 320, 520-523.	12.6	254
12	Microglia-Mediated Synapse Loss in Alzheimer's Disease. Journal of Neuroscience, 2018, 38, 2911-2919.	3.6	228
13	Emerging Roles of Extracellular Vesicles in the Nervous System. Journal of Neuroscience, 2014, 34, 15482-15489.	3.6	219
14	Membrane Trafficking Pathways in <scp>Alzheimer</scp> 's Disease. Traffic, 2012, 13, 759-770.	2.7	181
15	Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons. Journal of Neuroscience, 2008, 28, 2874-2882.	3.6	180
16	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	8.1	171
17	Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8241-8246.	7.1	131
18	A Paired RNAi and RabGAP Overexpression Screen Identifies Rab11 as a Regulator of β-Amyloid Production, Cell Reports, 2013, 5, 1536-1551.	6.4	120

LAWRENCE RAJENDRAN

#	Article	IF	CITATIONS
19	Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. Journal of Cell Science, 2009, 122, 3703-3714.	2.0	112
20	Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Reports, 2016, 14, 2127-2141.	6.4	87
21	Role of genes linked to sporadic Alzheimer's disease risk in the production of β-amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15307-15311.	7.1	80
22	A Function for EHD Family Proteins in Unidirectional Retrograde Dendritic Transport of BACE1 and Alzheimer's Disease Aβ Production. Cell Reports, 2013, 5, 1552-1563.	6.4	65
23	The Lipid Raft Microdomain-Associated Protein Reggie-1/ Flotillin-2 is Expressed in Human B Cells and Localized at the Plasma Membrane and Centrosome in PBMCs. Immunobiology, 2002, 205, 108-119.	1.9	52
24	Increased Aβ Production Leads to Intracellular Accumulation of Aβ in Flotillin-1-Positive Endosomes. Neurodegenerative Diseases, 2007, 4, 164-170.	1.4	44
25	The Wide World of Coacervates: From the Sea to Neurodegeneration. Trends in Biochemical Sciences, 2020, 45, 706-717.	7.5	43
26	Flotillins Are Involved in the Polarization of Primitive and Mature Hematopoietic Cells. PLoS ONE, 2009, 4, e8290.	2.5	42
27	Raft association and lipid droplet targeting of flotillins are independent of caveolin. Biological Chemistry, 2007, 388, 307-14.	2.5	40
28	The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Reports, 2017, 19, 1967-1976.	6.4	40
29	Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia. Stem Cells, 2019, 37, 724-730.	3.2	36
30	Retromers in Alzheimer's Disease. Neurodegenerative Diseases, 2012, 10, 116-121.	1.4	26
31	Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons. Molecular and Cellular Neurosciences, 2003, 22, 544-554.	2.2	24
32	Lipid-anchored drugs for delivery into subcellular compartments. Trends in Pharmacological Sciences, 2012, 33, 215-222.	8.7	21
33	Detection of Synaptic Proteins in Microglia by Flow Cytometry. Frontiers in Molecular Neuroscience, 2020, 13, 149.	2.9	20
34	Membrane Anchored and Lipid Raft Targeted β-Secretase Inhibitors for Alzheimer's Disease Therapy. Journal of Alzheimer's Disease, 2011, 24, 143-152.	2.6	18
35	Neurological and mental health consequences of COVID-19: potential implications for well-being and labour force. Brain Communications, 2021, 3, fcab012.	3.3	17
36	Cellular basis of Alzheimer′s disease. Annals of Indian Academy of Neurology, 2010, 13, 89.	0.5	14

#	Article	IF	CITATIONS
37	Effects of Anthocyanin Supplementation on Serum Lipids, Glucose, Markers of Inflammation and Cognition in Adults With Increased Risk of Dementia – A Pilot Study. Frontiers in Genetics, 2019, 10, 536.	2.3	14
38	Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Frontiers in Psychiatry, 2020, 11, 789.	2.6	14
39	miRâ€186 in Alzheimer's disease: a big hope for a small RNA?. Journal of Neurochemistry, 2016, 137, 308-311.	3.9	13
40	Lipid raft redistribution and morphological cell polarization are separable processes providing a basis for hematopoietic stem and progenitor cell migration. International Journal of Biochemistry and Cell Biology, 2012, 44, 1121-1132.	2.8	12
41	Exploration of Plasma Lipids in Mild Cognitive Impairment due to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 1117-1127.	2.6	5
42	γ-Secretase regulates the α-secretase cleavage of the Alzheimer's disease, amyloid precursor protein. Matters, 0, , .	1.0	2
43	Membrane Trafficking and Targeting in Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease, 2009, , 103-113.	0.1	1
44	Î ³ -Secretase Activating Protein (GSAP) does not specifically affect the Î ³ -Secretase processing of APP. Matters, 0, , .	1.0	1